Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1833-1836    DOI:
Original Articles |
Analyses of Optimal Embedding Dimension and Delay for Local Linear Prediction Model
MENG Qing-Fang;PENG Yu-Hua;LIU Yun-Xia;SUN Wei-Feng
School of Information Science and Engineering, Shandong University, Jinan 250100
Cite this article:   
MENG Qing-Fang, PENG Yu-Hua, LIU Yun-Xia et al  2007 Chin. Phys. Lett. 24 1833-1836
Download: PDF(296KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the reconstructed phase space, a novel local linear prediction model is proposed to predict chaotic time series. The parameters of the proposed model take the values that are different from those of the phase space reconstruction. We propose a criterion based on prediction error to determine the optimal parameters of the proposed model. The simulation results show that the proposed model can effectively make one-step and multi-step prediction for chaotic time series, and the one-step and multi-step prediction accuracy of the proposed model is superior to that of the traditional local linear prediction.
Keywords: 05.45.-a      05.45.Tp     
Received: 19 December 2006      Published: 25 June 2007
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Tp (Time series analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01833
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MENG Qing-Fang
PENG Yu-Hua
LIU Yun-Xia
SUN Wei-Feng
[1] Kantz H and Schreiber T 2003 Nonlinear Time Series Analysis2nd edn (Cambridge: Cambridge University Press)
[2] Farmer J D and Sidorowich J J 1987 Phys. Rev. Lett. 59 845
[3] Sugihara G and May R M 1990 Nature 344 734
[4] Gan J C and Xiao X C 2003 Acta Phys. Sin. 52 1096 (in Chinese)
[5] Gan J C and Xiao X C 2003 Acta Phys. Sin. 52 2996 (in Chinese)
[6] Meng Q F, Zhang Q and Mu W Y 2006 Acta Phys. Sin. 55 1666 (in Chinese)
[7] Li H C and Zhang J S 2005 Chin. Phys. Lett. 22 2776
[8] Zhang J S, Li H C and Xiao X C 2005 Chin. Phys. 14 49
[9] Takens F 1981 Dynamical Systems and Turbulence
[C] (Berlin:Springer) p 366
[10] Meng Q F, Peng Y H and Xue P J 2007 Chin. Phys. 16 1252
[11] Akaike H 1974 IEEE Trans. Auto. Control. 19 716
[12] Zhang X D 2003 Modern Signal Processing 2nd edn(Beijing: Tsinghua University Press) (in Chinese)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1833-1836
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 1833-1836
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1833-1836
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 1833-1836
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1833-1836
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 1833-1836
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1833-1836
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 1833-1836
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 1833-1836
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1833-1836
[11] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 1833-1836
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 1833-1836
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 1833-1836
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1833-1836
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 1833-1836
Viewed
Full text


Abstract