Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1829-1832    DOI:
Original Articles |
A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model
YI Ming1;JIA Ya1;LIU Quan1;ZHU Chun-Lian2;YANG Li-Jian1
1Department of Physics and Institute of Biophysics, Huazhong Normal University, Wuhan 4300792Department of Physics, Jianghan University, Wuhan 430056
Cite this article:   
YI Ming, JIA Ya, LIU Quan et al  2007 Chin. Phys. Lett. 24 1829-1832
Download: PDF(277KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25△ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the
experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.
Keywords: 05.40.-a      87.17.Aa     
Received: 05 March 2007      Published: 25 June 2007
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  87.17.Aa (Modeling, computer simulation of cell processes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01829
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YI Ming
JIA Ya
LIU Quan
ZHU Chun-Lian
YANG Li-Jian
[1]Nurse P 2000 Cell 100 71
[2]Tyson J J 1991 Proc. Natl. Acad. Sci. USA 88 7328
[3]Goldbeter A 1991 Proc. Natl. Acad. Sci. USA 88 9107
[4]Novak B and Tyson J J 1993 J. Cell. Sci. 106 1153
[5]Novak B and Tyson J J 1997 Proc. Natl. Acad. Sci. USA 94 9147
[6]Alt W and Tyson J J 1987 Math. Biosci. 84 159
[7]Tyson J J 1989 Math. Biosci. 96 165
[8]Sveiczer A and Novak B 1996 ACH-Models Chem. 133 299
[9]Sveiczer A et al 2000 Proc. Natl. Acad. Sci. USA 97 7865
[10]Sveiczer A et al %, Tyson J J and Novak B2001 Biophys. Chem. 92 1
[11]Harada Y et al%, Funatsu T, Murakami K, Nonoyama Y, Ishihama A and Yanagida T1999 Biophys. J. 76 709
[12]Hasty J et al %, Pradines J and Dolnik M2000 Proc. Natl. Acad. Sci. USA 97 2075
[13]Kepler T B and Elston T C 2001 Biophys. J. 81 3116
[14]Gonze D et al %, Halloy J and Goldbeter A2002 Proc. Natl. Acad. Sci. USA 99 673
[15]Swain P S et al %, Elowitz M B and Siggia E D2002 Proc. Natl. Acad. Sci. USA 99 12795
[16]McAdams H H et al %fand Arkin A1997 Proc. Natl. Acad. Sci. USA 94 814
[17]Barkai N and Leibler S 1999 Nature 403 267
[18]Rao C V, Wolf D M and Arkin A 2002 Nature 420 231
[19]Novak B, Pataki Z and Ciliberto A 2001 Chaos 11 277
[20]Gillespie D T 1977 J. Phys. Chem. 81 2340
[21]Gillespie D T 2000 J. Chem. Phys. 113 297
[22]Zhang J Q et al %, Hou Z H and Xin H W2004 ChemPhysChem. 5 1041
[23]Hou Z H and Xin H W 2004 Chem. Phys. Chem. 3 407
[24]Li H Y et al %, Hou Z H and Xin H W2005 Phys. Rev. E 71 061916
[25]Wang Z W et al %, Hou Z H and Xin H W2005 Chem. Phys. Lett. 401 307
[26]Yi M and Jia Y 2006 Phys. Rev. E 73 041923
[27]Sveiczer A et al 1996 J. Cell. Sci. 109 2947
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 1829-1832
[2] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 1829-1832
[3] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 1829-1832
[4] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 1829-1832
[5] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1829-1832
[6] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 1829-1832
[7] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 1829-1832
[8] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 1829-1832
[9] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 1829-1832
[10] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 1829-1832
[11] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 1829-1832
[12] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 1829-1832
[13] TANG Jun**, QU Li-Cheng, LUO Jin-Ming . Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network[J]. Chin. Phys. Lett., 2011, 28(10): 1829-1832
[14] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 1829-1832
[15] ZHANG Yan-Ping, HE Ji-Zhou. Thermodynamic Performance Characteristics of an Irreversible Micro-Brownian Heat Engine Driven by Temperature Difference[J]. Chin. Phys. Lett., 2010, 27(9): 1829-1832
Viewed
Full text


Abstract