Chin. Phys. Lett.  2007, Vol. 24 Issue (7): 1787-1790    DOI:
Original Articles |
Optical, Energetic and Exergetic Analyses of Parabolic Trough Collectors
OZTURK Murat;CICEK BEZIR Nalan;OZEK Nuri
Department of Physics, Science-Literature Faculty, Suleyman Demirel University, Isparta, Turkey
Cite this article:   
OZTURK Murat, CICEK BEZIR Nalan, OZEK Nuri 2007 Chin. Phys. Lett. 24 1787-1790
Download: PDF(234KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Parabolic trough collectors generate thermal energy from solar energy. Especially, they are very convenient for applications in high temperature solar power systems. To determine the design parameters, parabolic trough collectors must be analysed with optical analysis. In addition, thermodynamics (energy and exergy) analysis in the development of an energy efficient system must be achieved. Solar radiation passes through Earth's atmosphere until it reaches on Earth's surface and is focused from the parabolic trough collector to the tube receiver with a transparent insulated envelope. All of them constitute a complex mechanism. We investigate the geometry of parabolic trough reflector and characteristics of solar radiation to the reflecting surface through Earth's atmosphere, and calculate the collecting total energy in the receiver. The parabolic trough collector, of which design
parameters are given, is analysed in regard to the energy and exergy
analysis considering the meteorological specification in May, June, July and August in Isparta/Turkey, and the results are presented.
Keywords: 01.55.+b      45.20.Dh      92.60.Vb     
Received: 22 December 2006      Published: 25 June 2007
PACS:  01.55.+b (General physics)  
  45.20.dh (Energy conservation)  
  92.60.Vb (Radiative processes, solar radiation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I7/01787
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
OZTURK Murat
CICEK BEZIR Nalan
OZEK Nuri
[1] Sahin A 1995 PhD Thesis (Middle East TechnicalUniversity, Ankara)
[2] Duffie J A, Beckman W A 1984 Solar Engineering of ThermalProcesses (New York: Wiley)
[3] Look D C and Sundvold P D 1983 Solar Energy 31 545
[4] You Y and Hu E J 2002 Appl. Therm. Engin. 357
[5] Kotas T J 1985 The Exergy Method of Thermal PlantAnalysis (Malabar, FL: Krieger)
Related articles from Frontiers Journals
[1] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 1787-1790
[2] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 1787-1790
[3] WANG Hui-Ping, WANG Yu-Shun, HU Ying-Ying. An Explicit Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2008, 25(7): 1787-1790
[4] WANG Yu-Shun, LI Qing-Hong, SONG Yong-Zhong. Two New Simple Multi-Symplectic Schemes for the Nonlinear Schrodinger Equation[J]. Chin. Phys. Lett., 2008, 25(5): 1787-1790
[5] WANG Jian. Multisymplectic Integrator of the Zakharov System[J]. Chin. Phys. Lett., 2008, 25(10): 1787-1790
[6] WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2007, 24(2): 1787-1790
[7] Ercan YILMAZ, Beatriz CANCINO, Edmundo LOPEZ. Construction of a Quadratic Model for Predicted and Measured Global Solar Radiation in Chile[J]. Chin. Phys. Lett., 2007, 24(1): 1787-1790
[8] ZHOU Shu-rong, HUANG Guang-li. A Method of Calculation of the Solar Radio Flux Density for High Spatial Resolution Observations[J]. Chin. Phys. Lett., 1999, 16(3): 1787-1790
[9] WANG Yingzong. Improved Method of Behavior Type Analysis[J]. Chin. Phys. Lett., 1994, 11(7): 1787-1790
Viewed
Full text


Abstract