Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1618-1621    DOI:
Original Articles |
Topological Constraints on Scroll and Spiral Waves in Excitable Mediac
ZHANG Hong1,2,;HU Bambi 2,3;LI Bing-Wei1;DUAN Yi-Shi4
1Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 3100272Department of Physics, and the Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Hong Kong BaptistUniversity, Hong Kong3Department of Physics, University of Houston, Houston, TX 77204-5005, USA 4Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
ZHANG Hong, HU Bambi, LI Bing-Wei et al  2007 Chin. Phys. Lett. 24 1618-1621
Download: PDF(412KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A conservation equation for topological charges of phase singularities (scroll and spiral waves) in excitable media is given. It provides some topological properties of scroll (spiral) waves: for example, the topological charge of the generated or annihilated spiral pair must be opposite. Additionally, we obtain another equation on scroll waves, which shows that singular filaments of scroll waves occur on a set of one-dimensional curves which may be either closed loops or infinite lines.
Keywords: 47.54.-r      82.40.Ck     
Received: 05 September 2006      Published: 17 May 2007
PACS:  47.54.-r (Pattern selection; pattern formation)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01618
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hong
HU Bambi
LI Bing-Wei
DUAN Yi-Shi
[1] For examples, see Cross M C and Hohenberg P C 1993 Rev.Mod. Phys. 65 851 and references therein
[2] Davidenko J M et al 1992 Nature 355 349
[3] Jakubith S et al 1990 Phys. Rev. Lett. 65 3013
[4] Winfree A T 1972 Science 175 634 Ouyang Q et al 2000 Phys. Rev. Lett. 84 1047
[5] Vinson M et al 1997 Nature 386 477
[6] Alonso S et al 2003 Science 299 1722
[7] Zhang H, Cao Z, Wu N J, Ying H P and Hu G 2005 Phys.Rev. Lett. 94 188301 Cao Z et al 2006 Europhys. Lett. 75 875
[8] Winfree A T 1974 Sci. Am. 230 82
[9] Agladze K I and Krinsky V I 1982 Nature 296 424
[10] Winfree A T and Strogatz S H 1983 Physica D 8 35
[11] Nandapurkar P J and Winfree A T 1987 Physica D 29 69
[12] Zykov V S 1987 Simulation of Wave Processes inExcitable Media (New York: Manchester University Press)
[13] Winfree A T 1987 When Time Breaks Down(Princeton: Princeton University Press)
[14] Winfree A T 1990 SIAM Rev. 32 1
[15] Winfree A T 2001 The Geometry of Biological Time2nd ed (Berlin: Springer)
[16] Keener J P and Tyson J J 1992 SIAM Rev. 34 1
[17] Winfree A T 1994 Nature 371 233
[18] Gray R A et al 1998 Nature 392 75
[19] Pertsov A M et al 2000 Phys. Rev. Lett. 842738
[20] Duan Y S and Zhang H 1999 Phys. Rev. E 60 2568
[21] Wellner M et al 1999 Phys. Rev. E 59 5192
[22] Jahnke W et al 1989 J. Phys. Chem. 93 740
[23] Zhang H, Hu B, Hu G and Xiao J 2003 J. Chem. Phys. 119 4468 Zhang H, Wu N J, Ying H P, Hu G and Hu B 2004 J. Chem.Phys. 121 7276 Chen J X, Zhang H and Li Y Q 2005 J. Chem. Phys. 124 014505
[24] Barkley D 1991 Physica D 49 61
Related articles from Frontiers Journals
[1] GU Guo-Feng,WEI Hai-Ming,TANG Guo-Ning**. Wave Optics in Discrete Excitable Media[J]. Chin. Phys. Lett., 2012, 29(5): 1618-1621
[2] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2012, 29(2): 1618-1621
[3] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 1618-1621
[4] YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua**, LOU Qin, WANG Lu-Lu, SHEN Qian . Spiral Wave Generation in a Vortex Electric Field[J]. Chin. Phys. Lett., 2011, 28(10): 1618-1621
[5] YUAN Xiao-Ping, ZHENG Zhi-Gang** . Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(10): 1618-1621
[6] YU Cun-Juan**, TAN Ying-Xin . Frequency-Locking in a Spatially Extended Predator-Prey Model[J]. Chin. Phys. Lett., 2011, 28(1): 1618-1621
[7] LIU Pan-Ping. Emergent Travelling Pattern in a Spatial Predator-Prey System[J]. Chin. Phys. Lett., 2010, 27(2): 1618-1621
[8] LIU Yong-Jiang, WANG Ai-Ling, WANG Biao, LIU Zhao-Hua. Competitive Exclusion Principle Revised by Noise[J]. Chin. Phys. Lett., 2010, 27(1): 1618-1621
[9] YAN Long, WANG Hong-Li, , OUYANG Qi,. Deterministic Characterization of Intrinsic Noise in Chemical Reactions[J]. Chin. Phys. Lett., 2010, 27(1): 1618-1621
[10] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 1618-1621
[11] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 1618-1621
[12] LI Li, JIN Zhen, SUN Gui-Quan. Spatial Pattern of an Epidemic Model with Cross-diffusion[J]. Chin. Phys. Lett., 2008, 25(9): 1618-1621
[13] SUN Gui-Quan, JIN Zhen, LIU Quan-Xing, LI Li. Emergence of Strange Spatial Pattern in a Spatial Epidemic Model[J]. Chin. Phys. Lett., 2008, 25(6): 1618-1621
[14] MA Wen-Jie, WANG Yu-Ren, LAN Ding. Role of Convection Flow on the Pattern Formation in the Drying Process of Colloidal Suspension[J]. Chin. Phys. Lett., 2008, 25(4): 1618-1621
[15] REN Ji-Rong, ZHU Tao, DUAN Yi-Shi. Topological Aspect of Knotted Vortex Filaments in Excitable Media[J]. Chin. Phys. Lett., 2008, 25(2): 1618-1621
Viewed
Full text


Abstract