Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1614-1617    DOI:
Original Articles |
Phase Space Compression in One-Dimensional Complex Ginzburg--Landau Equation

GAO Ji-Hua1;PENG Jian-Hua2

1Shenzhen Key Laboratory of Special Functional Materials, College of Materials, Shenzhen University, Shenzhen 5180602College of Physics, Shenzhen University, Shenzhen 518060
Cite this article:   
GAO Ji-Hua, PENG Jian-Hua 2007 Chin. Phys. Lett. 24 1614-1617
Download: PDF(476KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transition from stationary to oscillatory states in dynamical systems under phase space compression is investigated. By considering the model for the spatially one-dimensional complex Ginzburg--Landau equation, we find that defect turbulence can be substituted with stationary and oscillatory signals by applying system perturbation and confining variable into various ranges. The transition procedure described by the oscillatory frequency is studied via numerical simulations in detail.
Keywords: 47.27.Rc      05.45.Gg      82.40.Ck     
Received: 05 January 2007      Published: 17 May 2007
PACS:  47.27.Rc (Turbulence control)  
  05.45.Gg (Control of chaos, applications of chaos)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01614
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Ji-Hua
PENG Jian-Hua
[1] Hu G and Qu Z L 1994 Phys. Rev. Lett. 72 68
[2] Kapitaniak T 1994 Phys. Rev. E 50 1642
[3] Lai Y C and Grebogi C 1994 Phys. Rev. E 50 1894
[4] Peng J H, Ding E J, Ding M et al 1996 Phys. Rev. Lett. 76 904
[5] Kocarev L, Parlitz U, Stojanovski T et al 1997 Phys. Rev. E 56 1238
[6] Xiao J H, Hu G and Hu B B 2004 Chin. Phys. Lett. 211224
[7] Alonso S, Sagues F and Mikhailov A S 2003 Science 2991722
[8] Zhang H, Cao Z J, Wu N J et al 2005 Phys. Rev. Lett. 94188301
[9] Jiang M X, Wang X N, Ouyang Q et al 2004 Phys. Rev. E 69 056202
[10] Wang X N, Lu Y, Jiang M X et al 2004 Phys. Rev. E 69056223
[11] Tang G N and Hu G 2006 Chin. Phys. Lett. 23 1523
[12] Xiao J H, Hu G, Yang J Z et al 1998 Phys. Rev. Lett. 81 5552
[13] Gao J H, Wang X G, Hu G et al 2001 Phys. Lett. A 283342
[14] Glass L and Zeng W 1994 Int. J. Bifur. Chaos Appl. Sci. Eng. 4 1061
[15] Luo X S 1999 Acta Phys. Sin. 48 402 (in Chinese)
[16] Zhang X and Shen K 2001 Phys. Rev. E 63 046212
[17] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence(New York: Springer)
[18] Cross M and Hohenberg P 1993 Rev. Mod. Phys. 65 851
[19] Shraiman B, Pumir A, Saarloos W et al 1992 Physica D 57 241
[20] Aranson I and Kramer L 2002 Rev. Mod. Phys. 74 99
[21] Chat\'{e H and Manneville P 1996 Physica A 224 348
[22] Hu B and Zhang H 2003 Int. J. Mod. Phys. B 17 3988
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 1614-1617
[2] YANG Wu-Bing*,SHEN Qing,WANG Qiang. Collective Interaction of Vortices in Two-Dimensional Shear Layers[J]. Chin. Phys. Lett., 2012, 29(5): 1614-1617
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1614-1617
[4] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 1614-1617
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 1614-1617
[6] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 1614-1617
[7] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 1614-1617
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 1614-1617
[9] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 1614-1617
[10] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 1614-1617
[11] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 1614-1617
[12] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 1614-1617
[13] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 1614-1617
[14] YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua**, LOU Qin, WANG Lu-Lu, SHEN Qian . Spiral Wave Generation in a Vortex Electric Field[J]. Chin. Phys. Lett., 2011, 28(10): 1614-1617
[15] YUAN Xiao-Ping, ZHENG Zhi-Gang** . Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(10): 1614-1617
Viewed
Full text


Abstract