Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1607-1610    DOI:
Original Articles |
Optimal Acoustic Attenuation of Weakly Compressible Media Permeated with Air Bubbles
LIANG Bin;CHENG Jian-Chun
Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093
Cite this article:   
LIANG Bin, CHENG Jian-Chun 2007 Chin. Phys. Lett. 24 1607-1610
Download: PDF(233KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on fuzzy logic (FL) and genetic algorithm (GA), we present an optimization method to obtain the optimal acoustic attenuation of a longitudinal acoustic wave propagating in a weakly compressible medium
permeated with air bubbles. In the optimization, the parameters of the size distribution of bubbles in the medium are optimized for providing uniformly high acoustic attenuation in the frequency band of interest. Compared with other traditional optimization methods, the unique advantage of the present method is that it can locate the global optimum quickly and effectively in need of knowing the mathematical model precisely. As illustrated by a numerical simulation, the method is effective and essential in enhancing the acoustic attenuation of such a medium in an optimal manner. The bubbly medium with optimized structural parameters can effectively attenuate longitudinal waves at intermediate frequencies with an acoustic attenuation approximating a constant value of 10(dB/cm). Such bubbly media with optimal acoustic attenuations may be applied to design acoustic absorbent by controlling broader attenuation band and higher efficiency.
Keywords: 43.20.Bi      43.20.Jr      43.35.Mr     
Received: 03 July 2006      Published: 17 May 2007
PACS:  43.20.Bi (Mathematical theory of wave propagation)  
  43.20.Jr (Velocity and attenuation of elastic and poroelastic waves)  
  43.35.Mr (Acoustics of viscoelastic materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01607
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Bin
CHENG Jian-Chun
[1] Ostrovsky L A 1988 Sov. Phys. Acoust. 34 523
[2] Ostrovsky L A 1991 J. Acoust. Soc. Am. 90 3332
[3] Gaunaurd GC and Barlow J 1984 J. Acoust. Soc. Am. 75 23
[4] Shen L F, Ye Z and He S 2003 Phys. Rev. B. 68 035109
[5] Liang B, Zhu Z M and Cheng J C 2006 Chin. Phys. 15 412
[6] Gaunaurd G C and \"Uberall H 1982 J. Acoust. Soc. Am. 71 282
[7] Li H and Gupta M 1995 Fuzzy Logic and IntelligentSystems (Boston: Kluwer)
[8] Zimmermann H J, Zadeh L A and Gaines B R 1984 FuzzySets and Decision Analysis (Amsterdam: North-Holland)
[9] Mitchell M 1996 An Introduction to Genetic Algorithms(Cambridge: MIT)
[10] Xu Y et al 2005 Chin. Phys. Lett. 22 2557
[11] Chang Y C, Yeh L J and Chiu M C 2005 Int. J.Numer. Meth. Engin. 62 317
[12] Toks\"oz M N and Cheng C H 1980 J. Acoust.Soc. Am. 67 S43
[13] Hennion A C and Decarpigny J N 1991 J. Acoust.Soc. Am. 90 3356
Related articles from Frontiers Journals
[1] DAI Yu-Rong, DING De-Sheng. Further Notes on the Gaussian Beam Expansion[J]. Chin. Phys. Lett., 2012, 29(2): 1607-1610
[2] FAN Li**, ZHANG Shu-Yi, ZHANG Hui . Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory[J]. Chin. Phys. Lett., 2011, 28(10): 1607-1610
[3] LIU Wei, YANG Jun. A Simple and Accurate Method for Calculating the Gaussian Beam Expansion Coefficients[J]. Chin. Phys. Lett., 2010, 27(12): 1607-1610
[4] LIANG Bin, ZOU Xin-Ye, CHENG Jian-Chun. Phase Transition in Acoustic Localization in a Soft Medium Permeated with Air Bubbles[J]. Chin. Phys. Lett., 2009, 26(2): 1607-1610
[5] ZHANG Qin-Lei, YANG Guang-Can. Experimental Investigation of Energy Level Dynamics in luminium Blocks with Temperature Distribution[J]. Chin. Phys. Lett., 2008, 25(8): 1607-1610
[6] NIE Jian-Xin, YANG Ding-Hui, YANG Hui-Zhu. Wave Dispersion and Attenuation in Partially Saturated Sandstones[J]. Chin. Phys. Lett., 2004, 21(3): 1607-1610
[7] ZHANG Yu, LIU Jin-Qiu, DING De-Sheng. Sound Field Calculations of Elliptical Pistons by the Superposition of Two-Dimensional Gaussian Beams[J]. Chin. Phys. Lett., 2002, 19(12): 1607-1610
[8] WU Fu-Gen, LIU Zheng-You, LIU You-Yan. Stop Gaps and Single Defect States of Acoustic Waves in Two-Dimensional Lattice of Liquid Cylinders[J]. Chin. Phys. Lett., 2001, 18(6): 1607-1610
[9] TONG Xiao-Jun, WANG Wei-Biao, ZHOU Ran, ZHANG De, QIN Hou-Rong. Propagation Properties of Quasi-longitudinal Leaky Surface Acoustic Wave on Y-Rotated Cut Quartz Substrates[J]. Chin. Phys. Lett., 2000, 17(9): 1607-1610
[10] WANG Cheng-hao, LIU Yuan, HE Shi-tang, HUANG Xin. High Velocity Acoustical Head Wave on Surface of ST Quartz[J]. Chin. Phys. Lett., 1999, 16(10): 1607-1610
Viewed
Full text


Abstract