Original Articles |
|
|
|
|
Entanglement Dynamics in Typical Local- and Normal-Mode Molecules |
HOU Xi-Wen1;WAN Ming-Fang2;MA Zhong-Qi3 |
1Department of Physics, Huazhong Normal University, Wuhan 4300792School of Natural Science, Wuhan University of Technology, Wuhan 430079 3Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918(4), Beijing 100049 |
|
Cite this article: |
HOU Xi-Wen, WAN Ming-Fang, MA Zhong-Qi 2007 Chin. Phys. Lett. 24 1549-1552 |
|
|
Abstract The entanglement dynamics of two stretching vibrations in theoretically typical local- and normal-mode molecules and realistic molecules H2O and SO2 in an algebraic model is studied in terms of the reduced-density linear entropy with initial entangled states taken to be two-mode squeezed vacuum states. It is shown that the behaviour of the entropy in theoretically typical molecules appears to be more regular than that in realistic ones, and that the entropy becomes irregular as the amplitude of two-mode squeezed vacuum states increases. For initial states with a small amplitude, it is demonstrated that the periodicity and the ``classical'' beat phenomenon of the entropy occur with the beat in theoretically typical molecules being more regular than that in realistic molecules H2O and SO2.
|
Keywords:
33.20.Tp
03.65.Ud
03.67.Mn
|
|
Received: 21 December 2006
Published: 17 May 2007
|
|
PACS: |
33.20.Tp
|
(Vibrational analysis)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
|
|
|
[1]Furuya K, Nemes M C and Pellegrino G Q 1998 Phys. Rev. Lett. 80 5524 [2] Hou X W and Hu B 2004 Phys. Rev. A 69 042110 Hou X W, Chen J H and Hu B 2005 Phys. Rev. A 71 034302 Xie Q and Hai W 2006 Eur. Phys. J. D 39 277 [3] Song L J, Wang X G, Li Y D and Zong Z G 2006 Chin. Phys. Lett. 23 3190 Hou X W, Chen J H, Wan M F and Ma Z Q 2006 Opt. Commun. 266 727 [4] Ban B 1999 J. Opt. B 1 L9 [5] Kuang L M and Zhou L 2003 Phys. Rev. A 68 043606 Liu W T, Liang L M, Li C Z and Yuan J M 2006 Chin. Phys. Lett. 23 3148 [6] Galindo A and Martin-Delgado M A 2002 Rev. Mod. Phys. 74 347 [7] Remacle R and Levine R D 2006 Phys. Rev. A 73 033820 [8] Tesch C M and deVivie-Riedle R 2002 Phys. Rev. Lett. 89 157901 Palao J P and Kosloff R 2003 Phys. Rev. A 68 062308 [9] Cheng T and Brown A 2006 J. Chem. Phys. 124 034111 [10] Sako T, Yamanouch K and Iachello F 2001 J. Chem. Phys. 114 9441 [11] Hou X W 2004 Chin. Phys. Lett. 21 1508 Bernal R and Lemus R 2006 J. Mol. Spectrosc. 235 218 [12] Ding S and Zheng Y 1999 J. Chem. Phys. 111 4466 Zheng Y and Ding S 1999 Phys. Lett. A 256 197 [13] Iachello F and Levine R D 1995 Algebraic Theory of Molecules(New York: Oxford University) [14] Kim J I, Nemes M C, de Toledo Piza A F R and Borges H E 1996 Phys. Rev. Lett. 77 207 [15] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89 [16] Du S D and Gong C D 1994 Phys. Rev. A 50 779 [17] Malinovsky V S and Sola I R 2006 Phys. Rev. Lett. 96050502 [18] Sun C P, Yi X X, Zhao S Y, Zhang L and Wang C 1997 Quant. Classic. Opt. 9 119 Abdel-Aty M 2003 J. Math. Phys. 44 1457 [19] Hou X W, Chen J H and Ma Z Q 2006 Phys. Rev. A 74 062513 Hou X W, Chen J H, Wan M F and Ma Z Q Mod. Phys. Lett. B (in press) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|