Chin. Phys. Lett.  2007, Vol. 24 Issue (6): 1537-1540    DOI:
Original Articles |
Ultrahigh Harmonic Generation from an Atom with Superposition of Ground State and Highly Excited States
YANG Yu-Jun1,2;CHEN Ji-Gen3;CHI Fang-Ping2;ZHU Qi-Ren2;ZHANG Hong-Xing1;SUN Jia-Zhong1
1Institute of Theoretical Chemistry, Jilin University, Changchun 1300122Institute of Atomic and Molecular Physics, Jilin University, Changchun 1300123Department of Physics, Taizhou University, Linhai 317000
Cite this article:   
YANG Yu-Jun, CHEN Ji-Gen, CHI Fang-Ping et al  2007 Chin. Phys. Lett. 24 1537-1540
Download: PDF(315KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the high-order harmonic generation from an atom prepared in a superposition of ground state and highly excited state. When the atom is irradiated by an ultrashort pulse, the cutoff position of the plateau in the harmonic spectrum is largely extended compared with the case that the atom is initially in the ground state. The physics of the extension of the high-order harmonic plateau can be interpreted by the spatial structure of the atomic initial wave packet. We can optimize the generation of high-order harmonics by substituting the excited state for a particular coherent superposition of some highly excited states to form a spatially localized excited wave packet.
Keywords: 32.80.Rm      42.65.Ky     
Received: 20 December 2006      Published: 17 May 2007
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I6/01537
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yu-Jun
CHEN Ji-Gen
CHI Fang-Ping
ZHU Qi-Ren
ZHANG Hong-Xing
SUN Jia-Zhong
[1] Brabec T et al 2000 Rev. Mod. Phys. 72 545
[2] Saliers P et al 1999 Adv. At. Mol. Opt. Phys. 41 83
[3] Drescher M et al 2001 Science 291 1923
[4] Paul P M et al 2001 Science 292 1689
[5] Zhang G P 2005 Phys. Rev. Lett. 95 047401
[6] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[7] Lewenstein M et al 1994 Phys. Rev. A 49 2117
[8] Watson J B et al 1996 Phys. Rev. A 53 R1962
[9] Sanpera A et al 1996 Phys. Rev. A 54 4320
[10] Averbukh V 2004 Phys. Rev. A 69 043406
[11] Hu S X et al 2004 Phys. Rev. A 69 033405
[12] Wang B B et al 2005 Phys. Rev. A 72 063412
[13] Niikura H et al 2005 Phys. Rev. Lett. 94 083003
[14] Paul P M et al 2005 Phys. Rev. Lett. 94 113906
[15] Su Q et al 1991 Phys. Rev. A 44 5997
[16] Javanainen J et al 1988 Phys. Rev. A 38 3430
[17] Burne K et al 1992 Phys. Rev. A 45 3347
[18] Chui C K 1992 An Introduction to Wavelets (New York:Academic)
[19] Yeazell J A et al 1988 Phys. Rev. Lett. 60 1494
Related articles from Frontiers Journals
[1] ZHANG Feng-Feng, YANG Feng, ZHANG Shen-Jin, WANG Zhi-Min, XU Feng-Liang, PENG Qin-Jun, ZHANG Jing-Yuan, WANG Xiao-Yang, CHEN Chuang-Tian, XU Zu-Yan. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2012, 29(6): 1537-1540
[2] WANG Li-Rong, WANG Gui-Ling, ZHANG Xin, LIU Li-Juan, WANG Xiao-Yang, ZHU Yong, CHEN Chuang-Tian. Generation of Ultraviolet Radiation at 266 nm with RbBe2BO3F2 Crystal[J]. Chin. Phys. Lett., 2012, 29(6): 1537-1540
[3] LI Xiao**, XIAO Hu, DONG Xiao-Lin, MA Yan-Xing, XU Xiao-Jun** . Coherent Beam Combining of Two Slab Laser Amplifiers and Second-Harmonic Phase Locking Based on a Multi-Dithering Technique[J]. Chin. Phys. Lett., 2011, 28(9): 1537-1540
[4] WANG Yuan-Sheng, XIA Chang-Long, GUO Jing**, LIU Xue-Shen** . Relative Phase Dependence of Double Ionization in a Synthesized Laser Pulse[J]. Chin. Phys. Lett., 2011, 28(8): 1537-1540
[5] JI Zhong-Hua, ZHANG Hong-Shan, WU Ji-Zhou, YUAN Jin-Peng, ZHAO Yan-Ting**, MA Jie, WANG Li-Rong, XIAO Lian-Tuan, JIA Suo-Tang . Photoassociative Production and Detection of Ultracold Polar RbCs Molecules[J]. Chin. Phys. Lett., 2011, 28(8): 1537-1540
[6] LI Ping-Xue**<\sup>, , ZHANG Xue-Xia, LIU Zhi, CHI Jun-Jie . Large-Mode-Area Double-Cladding Photonic Crystal Fiber Laser in the Watt Range at 980nm[J]. Chin. Phys. Lett., 2011, 28(8): 1537-1540
[7] KANG Hui-Peng, **, WANG Chuan-Liang, LIN Zhi-Yang, CHEN Yong-Ju, WU Ming-Yan, QUAN Wei, LIU Hong-Ping, LIU Xiao-Jun*** . Intensity and Polarization Effects in Short-Pulse Multiphoton Ionization of Xenon[J]. Chin. Phys. Lett., 2011, 28(8): 1537-1540
[8] RAO Zhi-Ming, WANG Xin-Bing**, LU Yan-Zhao, ZUO Du-Luo, WU Tao . Two Schemes for Generating Efficient Terahertz Waves in Nonlinear Optical Crystals with a Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(7): 1537-1540
[9] MA Dong-Li, REN Ming-Liang, LI Zhi-Yuan** . Broadband Response of Second Harmonic Generation in a Two-Dimensional Quasi-Random Quasi-Phase-Matching Structure[J]. Chin. Phys. Lett., 2011, 28(7): 1537-1540
[10] BAI Li-Hua**, HOU Lu-Qiang, CUI Ting-Ting, LIU Yu-Heng, WANG Yan, ZHANG Hui-Fang, DENG Dong-Mei . Asymmetry of Photodetachment of F by Few-Cycle Infrared Laser Fields: Laser-Intensity Effects[J]. Chin. Phys. Lett., 2011, 28(6): 1537-1540
[11] WEN Jing, JIANG Hong-Bing**, YU Jing, YANG Hong, GONG Qi-Huang** . Broadband Asymmetric Conical Emission via Cascaded Second-Order Nonlinear Polarization during the Propagation of Femtosecond Laser Pulses in a BBO Crystal[J]. Chin. Phys. Lett., 2011, 28(6): 1537-1540
[12] ZHU Hai-Yong**, ZHANG Ge, DUAN Yan-Min, HUANG Cheng-Hui, WEI Yong . Compact Continuous-Wave Nd:YVO4 Laser with Self-Raman Conversion and Sum Frequency Generation[J]. Chin. Phys. Lett., 2011, 28(5): 1537-1540
[13] CHEN Ying, QIAN Lie-Jia**, ZHU He-Yuan, FAN Dian-Yuan . Suppression of FM-to-AM Conversion in Broadband Third-Harmonic Generation of Nd:Glass Laser[J]. Chin. Phys. Lett., 2011, 28(4): 1537-1540
[14] LU Yan-Zhao, WANG Xin-Bing**, MIAO Liang, ZUO Du-Luo, CHENG Zu-Hai . Terahertz Generation in Nonlinear Crystals with Mid-Infrared CO2 Laser[J]. Chin. Phys. Lett., 2011, 28(3): 1537-1540
[15] LI Feng-Qin**, SHI Zhu, LI Yong-Min, PENG Kun-Chi . Tunable Single-Frequency Intracavity Frequency-Doubled Ti:Sapphire Laser around 461 nm[J]. Chin. Phys. Lett., 2011, 28(12): 1537-1540
Viewed
Full text


Abstract