Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1425-1428    DOI:
Original Articles |
Comparison of Supernovae Datasets Constraints on Dark Energy
ZHANG Cheng-Wu;XU Li-Xin;CHANG Bao-Rong;LIU Hong-Ya
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
Cite this article:   
ZHANG Cheng-Wu, XU Li-Xin, CHANG Bao-Rong et al  2007 Chin. Phys. Lett. 24 1425-1428
Download: PDF(737KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Cosmological measurements suggest that our universe contains a dark energy component. In order to study the dark energy evolution, we constrain a parameterized dark energy equation of state w(z)=w0 + w1 z/1+z using the recent observational datasets: 157 Gold type Ia supernovae and the newly released 182 Gold type Ia supernovae by the maximum likelihood method. It is found that the best fit w(z) crosses -1 in the past and the present best fit value of w(0)<-1 obtained from 157 Gold-type Ia supernovae. The crossing of -1 is not realized and w0=-1 is not ruled out in 1σ confidence level for the 182 Gold-type Ia supernovae. It is also found that the range of parameter w0 is wide even in 1σ confidence level and the best fit w(z) is sensitive to the prior of Ωm.
Keywords: 98.80.Es      98.80.-k      95.36.+x     
Received: 13 January 2007      Published: 23 April 2007
PACS:  98.80.Es (Observational cosmology (including Hubble constant, distance scale, cosmological constant, early Universe, etc))  
  98.80.-k (Cosmology)  
  95.36.+x (Dark energy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01425
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Cheng-Wu
XU Li-Xin
CHANG Bao-Rong
LIU Hong-Ya
[1] Riess A G et al 1998 Astron. J. 116 1009 astro-ph/9805201
[2] Perlmutter S et al 1999 Astrophys. J. 517 565astro-ph/9812133
[3]Spergel D N et al 2003 Astrophy. J. Suppl. 148175 astro-ph/0302209
[4] Spergel D N et al 2006 arXiv astro-ph/0603449
[5] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75559 (astro-ph/0207347)
[6] Zlatev I, Wang L M and Steinhardt P J 1999 Phys. Rev.Lett. 82 896
[7] Caldwell R R, Kamionkowski M and Weinberg N N 2003 Phys.Rev. Lett. 91 071301
[8] Feng B, Wang X L and Zhang X M 2005 Phys. Lett. B 607 35
[9] Armendariz-Picon C, Damour T and Mukhanov V 1999 Phys.Lett. B 458 209
[10] Padmanabhan T 2002 Phys. Rev. D 66 021301
[11] Riess A G et al 2004 Astrophys. J. 607 665astro-ph/0402512
[12] Riess A G et al 2006 arXiv astro-ph/0611572
[13] Chevallier M and Polarski D 2001 Int. J. Mod. Phys. D 10 213 (gr-qc/0009008)
[14] Linder E V 2003 Phys. Rev. Lett. 90 091301astro-ph/0208512
[15] Choudhury T R and Padmanabhan T 2005 Astron.Astrophys. 429 807 (astro-ph/0311622)
[16] Nesseris S and Perivolaropoulos L 2005 Phys. Rev. D 72123519 (astro-ph/0511040)
[17] Lewis A and Bridle S 2002 Phys. Rev. D 66 103511
[18] Alam U et al 2004 ArXiv astro-ph/0406672
[19] Eisenstein D J et al 2005 Astrophys. J. 633 560
[20] Allen S W et al 2004 Mon. Not. R. Astron. Soc. 353 457astro-ph/0405340
[21] Verde L et al 2002 Mon. Not. R. Astron. Soc. 335 432astro-ph/0112161
[22] Http://camb.info
[23] Http://cosmologist.info/cosmomc
[24] Http://cosmocoffee.info
Related articles from Frontiers Journals
[1] Mubasher Jamil*, D. Momeni** . Evolution of the Brans–Dicke Parameter in Generalized Chameleon Cosmology[J]. Chin. Phys. Lett., 2011, 28(9): 1425-1428
[2] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 1425-1428
[3] Atul Tyagi*, Keerti Sharma . Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity[J]. Chin. Phys. Lett., 2011, 28(8): 1425-1428
[4] Hassan Amirhashchi, Anirudh Pradhan, **, Bijan Saha . An Interacting Two-Fluid Scenario for Dark Energy in an FRW Universe[J]. Chin. Phys. Lett., 2011, 28(3): 1425-1428
[5] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 1425-1428
[6] Abdussattar**, S. R. Prajapati** . Friedman–Robertson–Walker Models with Late-Time Acceleration[J]. Chin. Phys. Lett., 2011, 28(2): 1425-1428
[7] CHEN Ju-Hua, **, ZHOU Sheng, WANG Yong-Jiu, . Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2011, 28(2): 1425-1428
[8] Ujjal Debnath . Modified Chaplygin Gas with Variable G and Λ[J]. Chin. Phys. Lett., 2011, 28(11): 1425-1428
[9] YANG Rong-Jia, QI Jing-Zhao, YANG Bao-Zhu . Restrictions on Purely Kinetic K-Essence[J]. Chin. Phys. Lett., 2011, 28(10): 1425-1428
[10] Koijam Manihar Singh*, Kangujam Priyokumar Singh** . Cosmic String Universes Embedded with Viscosity[J]. Chin. Phys. Lett., 2011, 28(10): 1425-1428
[11] Atul Tyagi, Keerti Sharma. Bianchi Type-V Magnetized String Cosmological Model with Variable Magnetic Permeability for Viscous Fluid distribution[J]. Chin. Phys. Lett., 2010, 27(8): 1425-1428
[12] Atul Tyagi, Keerti Sharma, Payal Jain. Bianchi Type-IX String Cosmological Models for Perfect Fluid Distribution in General Relativity[J]. Chin. Phys. Lett., 2010, 27(7): 1425-1428
[13] YANG Rong-Jia, GAO Xiang-Ting. Observational Constraints on Purely Kinetic k-Essence Dark Energy Models[J]. Chin. Phys. Lett., 2009, 26(8): 1425-1428
[14] WANG Jun, WU Ya-Bo, WANG Di, YANG Wei-Qiang. Extended Analysis on New Generalized Chaplygin Gas[J]. Chin. Phys. Lett., 2009, 26(8): 1425-1428
[15] FU Huan-Huan, WU Ya-Bo, CHENG Fang-Yuan. Dynamical Stability and Attractor of the Variable Generalized Chaplygin Gas Model[J]. Chin. Phys. Lett., 2009, 26(6): 1425-1428
Viewed
Full text


Abstract