Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1354-1356    DOI:
Original Articles |
Spin Transport Properties of the One-Dimensional Heisenberg Chain: Bethe-Ansatz Solution with Twist Boundary Conditions
ZHANG Qiu-Lan 1,2;GU Shi-Jian1
1Department of Physics and ITP, The Chinese University of Hong Kong, Hong Kong 2Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027
Cite this article:   
ZHANG Qiu-Lan, GU Shi-Jian 2007 Chin. Phys. Lett. 24 1354-1356
Download: PDF(220KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the Bethe-Ansatz solution of the one-dimensional Heisenberg model under twist boundary conditions, we study the spectra of the persistent current carried by the low-lying excited states. It is shown that though the energy spectra of spin-singlet and spin-triplet excitations are degenerate, their persistent current spectra are quite different.
Keywords: 75.10.Jm      75.40.-s      05.30.-d     
Received: 11 February 2007      Published: 23 April 2007
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
  05.30.-d (Quantum statistical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01354
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Qiu-Lan
GU Shi-Jian
[1] Alvarez J V and Gros C 2002 Phys. Rev. Lett. 88 077203
[2]Rosch A and Andrei N 2000 Phys. Rev. Lett. 85 1092
[3] Narozhny B N et al %, Millis A J and Andrei N1998 Phys. Rev. B 58 2921(R)
[4] Zotos X 1999 Phys. Rev. Lett. 82 1764
[5] Zotos X and Prelov\v{sek P 1996 Phys. Rev. B 53 983
[6] Peres N M R et al %, Dias R G, Sacramento P D and Carmelo J M P2000 Phys. Rev. B 61 5169
[7] Peres N M R et al %, Sacramento P D and Carmelo J M P2001 J. Phys.: Condens. Matter 13 5135
[8] Gu S J et al %, Pereira V M and Peres N M R2002 Phys. Rev. B 66 235108
[9] Heidrich-Meisner F et al %, Honecker A, Cabra D C and Brenig W2003 Phys. Rev. B 68 134436
[10] Benz J et al %, Fukui T, Klumper A and Scheeren C2005 J. Phys. Soc. Jpn. Suppl. 74 181
[11] Kobayashi K et al %, Mizokawa T, Fujimori A, Isobe M and Ueda Y1998 Phys. Rev. Lett. 80 3121
[12] Takenaka K et al%, Nakada K, Osuka A, Horii S, Ikuta H, Hirabayashi I, Sugai S and Mizutani U2000 Phys. Rev. Lett. 85 5428
[13] Takigawa M et al %, Motoyama N, Eisaki H and Uchida S1996 Phys. Rev. Lett. 76 4612
[14] Motoyama N, Eisaki H and Uchida S 1996 Phys. Rev. Lett. 76 3212
[15] Thurber K R et al %, Hunt A W, Imai T and Chou F C2001 Phys. Rev. Lett. 87 247202
[16] Lieb E H and Wu F Y 1968 Phys. Rev. Lett. 20 1445
[17] Bethe H A 1931 Z. Physik 71 205
[18] Carmelo J M Pet al %, Peres N M R and Sacramento P D2000 Phys. Rev. Lett. 84 4673
[19] Carmelo J M P and Horsch P 1992 Phys. Rev. Lett. 68 871
[20] Shastry B S and Sutherland B 1990 Phys. Rev. Lett. 65 243
Related articles from Frontiers Journals
[1] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 1354-1356
[2] ZHU Ren-Gui** . Frustrated Ferromagnetic Spin Chain near the Transition Point[J]. Chin. Phys. Lett., 2011, 28(9): 1354-1356
[3] Sudha, **, B. G. Divyamani, A. R. Usha Devi, . Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution[J]. Chin. Phys. Lett., 2011, 28(2): 1354-1356
[4] Erhan Albayrak . Thermal Entanglement in a Two-Qutrit Spin-1 Anisotropic Heisenberg Model[J]. Chin. Phys. Lett., 2011, 28(2): 1354-1356
[5] CAI Jiang-Tao, ABLIZ Ahmad**, BAI Yan-Kui, JIN Guang-Sheng . Effects of Dzyaloshinskii–Moriya Interaction on Optimal Dense Coding Using a Two-Qubit Heisenberg XXZ Chain with and without External Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(2): 1354-1356
[6] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 1354-1356
[7] HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. Chin. Phys. Lett., 2010, 27(9): 1354-1356
[8] ZHANG Hong-Biao, TIAN Li-Jun,. Fidelity Susceptibility in the SU(2) and SU(1,1) Algebraic Structure Models[J]. Chin. Phys. Lett., 2010, 27(5): 1354-1356
[9] ZHU Ren-Gui, WANG An-Min. Statistical Interaction Term of One-Dimensional Anyon Models[J]. Chin. Phys. Lett., 2010, 27(4): 1354-1356
[10] HU Li-Yun, FAN Hong-Yi. Generalized Positive-Definite Operator in Quantum Phase Space Obtained by Virtue of the Weyl Quantization Rule[J]. Chin. Phys. Lett., 2009, 26(6): 1354-1356
[11] GU Shi-Jian . Density-Functional Fidelity Approach to Quantum Phase Transitions[J]. Chin. Phys. Lett., 2009, 26(2): 1354-1356
[12] ZENG Tian-Hai, SHAO Bin, ZOU Jian. Effects of Intrinsic Decoherence on Information Transport in a Spin Chain[J]. Chin. Phys. Lett., 2009, 26(2): 1354-1356
[13] LI Da-Chuang, CAO Zhuo-Liang. Thermal Entanglement in the Anisotropic Heisenberg XYZ Model with Different Dzyaloshinskii-Moriya Couplings[J]. Chin. Phys. Lett., 2009, 26(2): 1354-1356
[14] LI An-Kang, LU Jun-Zhe, MA Lei. Bond-Alternating Antiferromagnetic S=1/2 Heisenberg Ladder with Ferromagnetic Diagonal Coupling[J]. Chin. Phys. Lett., 2009, 26(12): 1354-1356
[15] ZHENG Ping, LUO Jian-Lin, WU Dong, SU Shao-Kui, LIU Guang-Tong, MAYong-Chang, CHEN Zhao-Jia. Anisotropic Applied Field Dependency of Two Successive Magnetic Transitions in LiCu2O2[J]. Chin. Phys. Lett., 2008, 25(9): 1354-1356
Viewed
Full text


Abstract