Original Articles |
|
|
|
|
Photovoltaic and Electroluminescence Characters in Hybrid ZnO and Conjugated Polymer Bulk Heterojunction Devices |
LIU Jun-Peng1;QU Sheng-Chun1;XU Ying2;CHEN Yong-Hai1;ZENG Xiang-Bo1;WANG Zhi-Jie1;ZHOU Hui-Ying1;WANG Zhan-Guo1 |
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 1000832Beijing Solar Energy Research Institute, Beijing 100083 |
|
Cite this article: |
LIU Jun-Peng, QU Sheng-Chun, XU Ying et al 2007 Chin. Phys. Lett. 24 1350-1353 |
|
|
Abstract We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) bulk heterojunction photovoltaic cells. Photoluminescence quenching experimental results indicate that the ultrafast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity about 1.2eV greater than that of MDMO-PPV. Electron `back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electroluminescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.
|
Keywords:
73.50.Pz
78.60.Fi
|
|
Received: 19 January 2007
Published: 23 April 2007
|
|
PACS: |
73.50.Pz
|
(Photoconduction and photovoltaic effects)
|
|
78.60.Fi
|
(Electroluminescence)
|
|
|
|
|
[1] Kim Y, Choulis S A, Nelson J, Bradley D D C, Cook S and Durrant J R2005 Appl. Phys. Lett. 86 063502 [2] Reyes-Reyes, Kim K and Carroll D L 2005 Appl. Phys.Lett. 87 083506 [3] Padinger F, Rittberger R S and Sariciftci N S 2003 Adv. Funct.Mater. 13 85 [4] Ma W L, Yang C Y, Gong X, Lee K and Heeger A 2005 Adv. Funct.Mater. 15 1617 [5] Beek W J E, Wienk M M and Janssen R A J 2004 Adv. Mater 16 1009 [6] Beek W J E, Wienk M M, Kemerink M, Yang X N and Janssen R A J2005 J. Phys. Chem. B 109 9505 [7] Beek W J E, Slooff L H, Wienk M M, Kroon J M and Janssen R A J 2005 Adv. Funct. Mater. 15 1703 [8] Beek W J E, Wienk M M and Janssen R A J 2005 J. Mater. Chem. 15 2985 [9] Coakley K M and McGehee M D 2004 Chem. Mater. 16 4533 [10] Ravirajan P, Peir?A M, Nazeeruddin M K, Graetzel M, Bradley D DC, Durrant J R and Nelson J 2006 J. Phys. Chem. B 110 7635 [11] Kim H, Kim J Y, Park S H and Lee K 2005 Appl. Phys. Lett. 86 183502 [12] Pacholski C, Kornowski A and Weller H 2002 Angew. Chem.Int. Ed. 41 1188 [13] Peng W Q, Qu S C, Cong G W and Wang Z G, 2005 Appl. Phys.Lett. 88 101902 [14] Peng W Q, Cong G W, Qu S C and Wang Z G 2005 Nanotechnology 16 1469 [15] Sariciftci N S, Smilowitz L, Heeger A J and Wudl F 1992 Science 258 1474 [16] Pientka M, Dyakonov V, Meissner D, Rogach A, Talapin D, Weller H,Lutsen L and Vanderzande D 2004 Nanotechnology 15 163 [17] Mattoussi H, Radzilowski L H, Dabbousib B O and Thomas E L 1998 J. Appl. Phys. 83 15 [18] Parker I D 1994 J. Appl. Phys. 75 1 [19] K\"onenkamp R, Word R C and Godinez M 2006 Nanotechnology 17 1858 [20] Qian L, Zhang T, Wageh S, Jin Z S, Du Z L, Wang Y S and Xu X R2006 Nanotechnology 17 100 [21] Qian L, Zhang T, Wageh S, Jin Z S, Du Z L, Wang Y S, Xu X R,Ivanov I N and Geohegan D B 2005 Appl. Phys. Lett. 87 263118 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|