Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1294-1297    DOI:
Original Articles |
Highly Birefringent Honeycomb Photonic Bandgap Fibre
FANG Hong;LOU Shu-Qin;GUO Tie-Ying;JIAN Shui-Sheng
Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044
Cite this article:   
FANG Hong, LOU Shu-Qin, GUO Tie-Ying et al  2007 Chin. Phys. Lett. 24 1294-1297
Download: PDF(428KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new structure of highly birefringent honeycomb photonic bandgap fibres (PBGFs), including an elliptical air hole in its solid core, is proposed and analysed by using full vectorial plane wave expansion method. From the numerical results it is confirmed that the proposed PBGF has birefringence of the order of 10-3. Moreover, there are two single-polarization single-mode ranges at varying normalized wavelength, in one of which only the slow-axis mode exists, and in the other only the fast-axis mode exists, which has not been achieved in index-guiding photonic crystal fibres so far.
Keywords: 42.81.Gs      42.81.Wg      42.70.Qs     
Received: 16 October 2006      Published: 23 April 2007
PACS:  42.81.Gs (Birefringence, polarization)  
  42.81.Wg (Other fiber-optical devices)  
  42.70.Qs (Photonic bandgap materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01294
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Hong
LOU Shu-Qin
GUO Tie-Ying
JIAN Shui-Sheng
[1] Broeng J, Mogilevstev D, Barkou S E et al 1999 Opt. FiberTechnol. 5 305
[2] Birks T A, Knight J C, Mangan B J et al 2001 IEICE Trans.Electron. E84-C 585
[3] Knight J C, Birks T A, Russell P St J et al 1996 Opt. Lett. 21 154
[4] Knight J C, Broeng J, Birks T A et al 1998 Science 2821476
[5] Hansen T P, Broeng J, Libori S E B et al 2001 IEEE Photon.Technol. Lett. 13 588
[6] Suzuki K, Kubota H and Kawanishi S 2001 Opt. Express 9676
[7] Belardi W, Bouwmans G, Provino L et al 2005 IEEE J. QuantumElectron. 41 1558
[8] Saitoh K and Koshiba M 2002 IEEE Photon. Technol. Lett. 14 1291
[9] Zhang C S, Kai G Y, Wang Z et al 2005 Opt. Lett. 302703
[10] Johnoson S G and Joannopoulos J D 2001 Opt. Express 8173190
[11] Hwang I K, Lee Y H, Oh K et al 2004 Opt. Express 121916
[12] Ju J, Jin and Demokan M S 2006 J. Lightwave Technol. 24 825
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 1294-1297
[2] ZHOU Yan, YIN Li-Qun. Self-Detection of Leaking Pipes by One-Dimensional Photonic Crystals[J]. Chin. Phys. Lett., 2012, 29(6): 1294-1297
[3] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 1294-1297
[4] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 1294-1297
[5] LI Heng,SHENG Chuan-Xiang**,CHEN Qian. Optical Bistability in Ag/Dielectric Multilayers[J]. Chin. Phys. Lett., 2012, 29(5): 1294-1297
[6] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 1294-1297
[7] WU Hong, JIANG Li-Yong, JIA Wei, LI Xiang-Yin. Polarization Beam Splitter Based on an Annular Photonic Crystal of Negative Refraction[J]. Chin. Phys. Lett., 2012, 29(3): 1294-1297
[8] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 1294-1297
[9] CHEN Xi-Yao**, LIN Gui-Min, LI Jun-Jun, XU Xiao-Fu, JIANG Jun-Zhen, QIANG Ze-Xuan, QIU Yi-Shen, LI Hui. Polarization Beam Splitter Based on a Self-Collimation Michelson Interferometer in a Silicon Photonic Crystal[J]. Chin. Phys. Lett., 2012, 29(1): 1294-1297
[10] SHANG Chao, WU Chong-Qing**, LI Zheng-Yong, YANG Shuang-Shou** . A New Distributed Measurement of Birefringence Vectors by P-OTDR Assisted by a High Speed Polarization Analyzer[J]. Chin. Phys. Lett., 2011, 28(9): 1294-1297
[11] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 1294-1297
[12] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 1294-1297
[13] WANG Fei, **, ZHANG Xin-Liang, YU Yu, XU En-Ming . Preprocessing-Free All-Optical Clock Recovery from NRZ and NRZ-DPSK Signals Using an FP-SOA Based Active Filter[J]. Chin. Phys. Lett., 2011, 28(6): 1294-1297
[14] FANG Yi-Jiao, CHEN Zhuo**, WANG Zhen-Lin . Slow-Light Propagation in a Tapered Dielectric Periodic Waveguide over Broad Frequency Range[J]. Chin. Phys. Lett., 2011, 28(5): 1294-1297
[15] LIU Hong-Wei**, KAN Qiang, WANG Chun-Xia, HU Hai-Yang, XU Xing-Sheng, CHEN Hong-Da . Light Extraction Enhancement of GaN LED with a Two-Dimensional Photonic Crystal Slab[J]. Chin. Phys. Lett., 2011, 28(5): 1294-1297
Viewed
Full text


Abstract