Original Articles |
|
|
|
|
Electrostatic Surface Trap for Cold Polar Molecules with a Charged Circular Wire |
MA Hui;ZHOU Bei;LIAO Bin;YIN Jian-Ping |
Key Laboratory for Optical and Magnetic Resonance Spectroscopy (Ministry of Education), Department of Physics, East China Normal University, Shanghai 200062 |
|
Cite this article: |
MA Hui, ZHOU Bei, LIAO Bin et al 2007 Chin. Phys. Lett. 24 1228-1230 |
|
|
Abstract We propose a novel scheme to trap cold polar molecules on the surface of an insulating substrate (i.e. a chip) by using an inhomogeneous electrostatic field, which is generated by the combination of a circular charged wire (a ring electrode) and a grounded metal plate. The spatial distributions of the electrostatic field from the above charged wire layout and its Stark potentials for CO molecules are calculated. Our study shows that when the voltage applied to the wire is U=15kV, a ring radius is R=5mm, the thickness of the insulating substrate is b=5mm, and a wire radius is r=1mm, the maximum efficient trapping potential (i.e., as equivalent temperature) for CO molecules is greater than 141.7mK, which is high enough to trap cold polar molecules with a temperature of 50mK in the low-field-seeking states.
|
Keywords:
33.80.Ps
33.55.Be
39.10.+j
|
|
Received: 15 November 2006
Published: 23 April 2007
|
|
|
|
|
|
[1] Thorpe M J, Moll K D, Jones R J, Safdi B and Ye J 2006 Science 311 1595 [2] Hudson J J, Sauer B E, Tarbutt M R and Hinds E A 2002 Phys.Rev. Lett. 89 023003-1 [3] Balakrishnan N A and Dalgarno 2001 Chem. Phys. Lett. 341 652 [4] Burnett K, Paul S J, Paul D L, Eite T and Williams C J 2002 Nature 416 225 [5] Bodo E and Gianturco F A 2002 J. Chem. Phys. 116 9222 [6] Bjorn B et al%, Hackermuller L, Uttenthaler S, Petschinka J, Arndt M and Zeilinger A2002 Phys. Rev. Lett. 88 100404 [7] DeMille D 2002 Phys. Rev. Lett. 88 067901 [8] Ander A et al%, Demille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J%and Zoller P2006 Nature Phys. 2 636 [9] Doyle J M, Friedrich B, Kim J and Patterson D 1995 Phys.Rev. A 52 R2515 [10] Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558 [11] Bethlem H L, van Roij A J A, Jongma R T and Meijer G 2002 Phys. Rev. Lett. 88 133003 [12] Tarbutt M R et al%, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G%and Hinds E A2004 Phys. Rev. Lett. 92 173002 [13] Bochinski J R et al%, Hudson E R, Lewandowski H J, Meijer G and Ye J 2003 Phys. Rev. Lett. 91 243001 [14] Fulton R, Bishop A I and Barker P F 2004 Phys. Rev. Lett. 93 243004 [15] Rangwala S A, Junglen T, Rieger T, Pinkse P W H and Rempe G 2003 Phys. Rev. A 67 043406 [16] Junglen T, Rieger T, Rangwala S A, Pinksea P W H. and Rempe G 2004 Eur. Phys. J. D 31 365 [17] Takekoshi T, Patterson B M and Knize R J 1998 Phys. Rev. Lett. 81 5105 [18] Weinstein J D et al %, de Carvalho R, Guillet T, Friedrich B and Doyle J M1998 Nature 395 148 [19] Bethlem H L et al%, Berden G, Crompvoets F M. H, Jongma R T, van Roij A J A and Meijer G2000 Nature 406 491 [20] Crompvoets F M H, Bethlem H L, Jongma R T and Meijer G 2001 Nature 411 174 [21] Jongma R T, von Helden G, Berden G and Meijer G 1997 Chem.Phys. Lett. 270 304 [22] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T,van Roij J A and Meijer G 2000 Nature 406 492 [23] van Veldhoven J, Bethlem H L and Meijer G 2005 Phys. Rev.Lett. 94 083001 [24] DeMille D, Glenn D R and Petricka J 2004 Eur. Phys. J. D 31 375 [25] Xia Y, Deng L and Yin J 2005 Appl. Phys. B. 81 459 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|