Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1210-1213    DOI:
Original Articles |
Impact of Viscosity on DNA Dynamics
S. ZDRAVKOVIC1;M. V. SATARIC2
1Faculty of Technical Sciences, University of Pristina, Kosovska Mitrovica,Serbia 2Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
Cite this article:   
S. ZDRAVKOVIC, M. V. SATARIC 2007 Chin. Phys. Lett. 24 1210-1213
Download: PDF(226KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the influence of viscosity on DNA dynamics. By employing the nonlinear Peyrard--Bishop--Dauxois (PBD) model, it is shown that the DNA dynamics can be explained by a solution of a complex nonlinear Schrodinger equation (CNLSE). This is the nonlinear Schrodinger equation (NLSE) with a nonlinear parameter being a complex number. We compare real and maginary parts of this nonlinear parameter and show that the latter one should not be negligible, which means that the CNLSE should be solved numerically.

Keywords: 31.15.Qg      05.45.-a      87.14.Gg     
Received: 15 January 2007      Published: 23 April 2007
PACS:  31.15.Qg  
  05.45.-a (Nonlinear dynamics and chaos)  
  87.14.Gg  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. ZDRAVKOVIC
M. V. SATARIC
[1] Peyrard M and Bishop A R 1989 Phys. Rev. Lett. 62 2755
[2] Dauxois T 1991 Phys. Lett. A 159 390
[3] Dauxois T and Peyrard M 1991 Nonlinear Coherent Structures inPhysics and Biology ed Remoissenet M and Peyrard M (Proceedings,Dijon, France) vol 393 pp 79--86
[4] Zdravkovic S, Sataric M V and Tuszynski J A 2004 J.Comput. Theor. Nanosci. 1 171
[5] Zdravkovic S, Tuszynski J A and Sataric M V 2005 J.Comput. Theor. Nanosci. 2 1
[6] Zdravkovic S and Sataric M V 2006 Phys. Rev. E 73021905
[7] Remoissenet M 1986 Phys. Rev. B 33 2386
[8] Sataric M V, Tuszynski J A and \v Zakula R B 1993 Phys. Rev. E 48 589
[9]Zdravkovic S and Sataric M V 2001 Physica Scripta 64 612
[10] Zdravkovic S and Sataric M V 2006 Chin. Phys. Lett. 23 65
[11] Zdravkovic S and Sataric M V 2006 Europhys. Lett.(to be published)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 1210-1213
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 1210-1213
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 1210-1213
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 1210-1213
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 1210-1213
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 1210-1213
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 1210-1213
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 1210-1213
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 1210-1213
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 1210-1213
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 1210-1213
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 1210-1213
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 1210-1213
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 1210-1213
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 1210-1213
Viewed
Full text


Abstract