Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1151-1153    DOI:
Original Articles |
Controlled Teleportation of an Arbitrary Multi-Qudit State in a General Form with d-Dimensional Greenberger--Horne--Zeilinger States
LI Xi-Han 1,2,3;DENG Fu-Guo 1,2,3;ZHOU Hong-Yu 1,2,3
1The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 1008752Institute of Low Energy Nuclear Physics, and Department of Material Science and Engineering, Beijing Normal University, Beijing 1008753Beijing Radiation Center, Beijing 100875
Cite this article:   
LI Xi-Han, DENG Fu-Guo, ZHOU Hong-Yu 2007 Chin. Phys. Lett. 24 1151-1153
Download: PDF(349KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A general scheme for controlled teleportation of an arbitrary multi-qudit state with d-dimensional Greenberger--Horne--Zeilinger (GHZ) states is proposed. For an arbitrary m-qudit state, the sender Alice performs m generalized Bell-state projective measurements on her 2m qudits and the controllers need only take some single-particle measurements. The receiver Charlie can reconstruct the unknown m-qudit state by performing some single-qudit unitary operations on her particles if she cooperates with all the controllers. As the quantum channel is a sequence of maximally entangled GHZ states, the intrinsic efficiency for qudits in this scheme approaches 100% in principle.
Keywords: 03.67.Hk      03.65.Ud     
Received: 07 December 2006      Published: 23 April 2007
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01151
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xi-Han
DENG Fu-Guo
ZHOU Hong-Yu
[1]Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[2] Zheng S B and Guo G C 1997 Phys. Lett. A 232 171
[3] Zheng S B 2006 Chin. Phys. Lett. 23 2356
[4] Yu S X and Sun C P 2000 Phys. Rev. A 61 022310
[5] Zhan X G et al 2006 Chin. Phys. Lett. 23 2900
[6]Yang C P et al 2004 Phys. Rev. A 70 022329
[7]Deng F G et al 2005 Phys. Rev. A 72 022338
[8]Zhang Z J 2006 Phys. Lett. A 352 55
[9] Zhan X G et al 2006 Chin. Phys. Lett. 23 2900
[10] Yan F L and Ding H W 2006 Chin. Phys. Lett. 23 17
[11] Cao H J et al 2006 Chin. Phys. 15 915
[12]Karlsson A and Bourennane M 1998 Phys. Rev. A 584394
[13]Deng F G et al 2005 Phys. Rev. A 72 044301
[14]Li X H et al 2005 J. Phys. B 39 1975
[15]Deng F G et al 2006 Eur. Phys. J. D 39 459
[16] Zhang Y Q et al 2006 Chin. Phys. 15 2252
[17]Zhang Z J 2005 Eur. Phys. J. D 33 133
[18]Wang Z Y and Zhang Z J quant-ph/0607187
[19]Li Y M et al 2004 Phys. Lett. A 324 420
[20] Li C Y et al 2006 Chin. Phys. Lett. 23 2896
[21] Li X H et al 2006 J. Korean Phys. Soc. 491354
[22] Wang C et al 2005 Phys. Rev. A 71 044305
[23] Liu X S et al 2002 Phys. Rev. A 65 022304
[24] Li C Y et al 2005 Chin. Phys. Lett. 22 1049
[25] Deng F G et al 2006 Chin. Phys. Lett. 23 1676
[26] Deng F G et al 2006 Chin. Phys. Lett. 23 1084
[27] Li X H et al 2007 Chin. Phys. Lett. 24 23
[28] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[29] Li X H et al 2006 Phys. Rev. A 74 054302
[30] Deng F G and Long G L 2004 Phys. Rev. A 69052319
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 1151-1153
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 1151-1153
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 1151-1153
[4] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 1151-1153
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 1151-1153
[6] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 1151-1153
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 1151-1153
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 1151-1153
[9] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 1151-1153
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 1151-1153
[11] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 1151-1153
[12] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 1151-1153
[13] Abbass Sabour, Mojtaba Jafarpour** . A Probability Measure for Entanglement of Pure Two-Qubit Systems and a Useful Interpretation for Concurrence[J]. Chin. Phys. Lett., 2011, 28(7): 1151-1153
[14] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 1151-1153
[15] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 1151-1153
Viewed
Full text


Abstract