Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1136-1139    DOI:
Original Articles |
Non-Adiabatic Geometric Phase in a Dispersive Interaction System
Ji-Bing1;LI Jia-Hua 1,LV Xin-You 1;ZHENG An-Shou 1,2
1Department of Physics, Huazhong University of Science and Technology, Wuhan 4300742Department of Mathematic and Physics, China University of Geosciences, Wuhan 430074
Cite this article:   
Ji-Bing, LI Jia-Hua, LV Xin-You et al  2007 Chin. Phys. Lett. 24 1136-1139
Download: PDF(246KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate the geometric phase and dynamic phase of a two-level fermionic system with dispersive interaction, driven by a quantized bosonic field which is simultaneously subjected to parametric amplification. It is found that the geometric phase is induced by a counterpart of the Stark shift. This effect is due to distinct shifts in the field frequency induced by interaction between different states (|e> and |g>) and cavity field, and a simple geometric interpretation of this phenomenon is given, which is helpful to understand the natural origin of the geometric phase.

Keywords: 03.65.Vf      42.50.Ct      42.50.Pq     
Received: 26 December 2006      Published: 23 April 2007
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01136
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ji-Bing
LI Jia-Hua
LV Xin-You
ZHENG An-Shou
[1] Pancharatnam S 1956 Proc. Indian Acad. Sect. A 44 274
[2] Berry M V 1984 Proc. Roy. Soc. A 392 47
[3] Simon B 1983 Phys. Rev. Lett. 51 2167
[4] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
[5] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 581593
[6] Uhlmann A 1986 Rep. Math. Phys. 24 229
[7] Sj"oqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi DK L and Vedral V 2000 Phys. Rev. Lett. 85 2845
[8] Singh K, Tong D M, Basu K, Chen J L and Du J F 2003 Phys.Rev. A 67 032106
[9] Tong D-M, Chen J-L and Du J-F 2003 Chin. Phys. Lett. 20 793
[10]Carollo A, Fuentes-Guridi I, Franca S M and Vedral V 2003 Phys. Rev. Lett. 90 160402
[11] Tong D M, Sj"oqvist E, Kwek L C and Oh C H 2004 Phys.Rev. Lett. 93 080405
[12] Yi X X, Tong D M, Wang L C, Kwek L C and Oh C H 2006 Phys. Rev. A 73 052103
[13] Shapere A and Wilczek F 1989 Geometric phases inphysics (Singapore: World Scientific)
[14] Macchiavello C, Palma G M and Zeilinger A 2000 QuantumComputation and Quantum Information Theory (Singapore: World Scientific)
[15] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355
[16] Suter D, Chingas G, Harris R and Pines A 1987 Mol.Phys. 61 1327
[17] Goldman M, Fleury V and Gu'eron M 1996 Magn. Reson. A 118 11
[18] Jones J A and Pines A 1997 J. Chem. Phys. 1063007
[19] Jones J, Vedral V, Ekert A K and Castagnoli C 2000 Nature 403 869
[20] Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901
[21] Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94140402
[22] Serra M, Carollo A, Stantos M F and Vedral V 2004 Phys.Rev. A 70 044102
[23] Buck B and Sukumar C V 1981 Phys. Lett. A 81 132
[24] Yang X, Wu Y and Li Y J 1997 Phys. Rev. A 554545
[25] Wu Y and Yang X 1997 Phys. Rev. Lett. 78 3086
[26] Yang X X, Wu Y, Luo X L, Gao K L and Xiao Y 1998 Chin.Phys. Lett. 15 186
[27] Duzzioni E I, Villas-B^{oas C J, Mizrahi S S, Moussa M H Yand Serra R M 2005 Europhys. Lett. 72 21
[28] Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458
[29] Boyd R 2003 Nonlinear Optics (New York: Academic) Scully M O and Zubairy M S 1997 Quantum optics (Cambridge:Cambridge University) Walls D F and Milburn G J 1994 Quantum Optics (Berlin:Springer)
[30] Carollo A, Franca S M and Vedral V 2003 Phys. Rev. A 67 063804
[31] Brune M, Hagley E, Dreyer J, Ma$hat{rm i$tre X, Maali A,Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887 Varcoe B T H, Brattke S, Weidinger M and Walther H 2000 {itNature 403 743
[32] Knight P L and Shore B W 1993 Phys. Rev. A 48 642 Hach I$!$I$!$I E E and Gerry C C 1994 Phys. Rev. A 49 490 Brune M, Haroche S, Raimond J M, Davidovich L and Zagury N 1992{it Phys. Rev. A 45 5193
[33] Wu Y and Yang X 2006 Phys. Rev. D 73 067701
Related articles from Frontiers Journals
[1] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 1136-1139
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 1136-1139
[3] CHENG Mu-Tian,SONG Yan-Yan,YU Long-Bao**. Transmission Characteristics in a Coupled-Resonator Waveguide Interacting with a Two-Mode Nanocavity Containing a Three-Level Emitter[J]. Chin. Phys. Lett., 2012, 29(5): 1136-1139
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 1136-1139
[5] YAN Long,FENG Xun-Li**,ZHANG Zhi-Ming,LIU Song-Hao. An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space[J]. Chin. Phys. Lett., 2012, 29(4): 1136-1139
[6] TIAN Wei, CHEN Bin, XU Wei-Dong. Controlling Single-Photon Transport along an Optical Waveguide by using a Three-Level Atom[J]. Chin. Phys. Lett., 2012, 29(3): 1136-1139
[7] WANG Xu-Cheng, CHENG Hua-Dong, XIAO Ling, ZHENG Ben-Chang, MENG Yan-Ling, LIU Liang, WANG Yu-Zhu. Measurement of Spatial Distribution of Cold Atoms in an Integrating Sphere[J]. Chin. Phys. Lett., 2012, 29(2): 1136-1139
[8] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 1136-1139
[9] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 1136-1139
[10] ZHANG Ai-Ping**, QIANG Wen-Chao, LING Ya-Wen, XIN Hong, YANG Yong-Ming . Geometric Phase for a Qutrit-Qubit Mixed-Spin System[J]. Chin. Phys. Lett., 2011, 28(8): 1136-1139
[11] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 1136-1139
[12] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 1136-1139
[13] LUO Ya-Qin**, SONG Yan-Yan, GU Ling-Ming, LANG Jia-Hong, MA Xiao-San . Voltage-Controlled Scattering of Single Photons in a One-Dimensional Waveguide[J]. Chin. Phys. Lett., 2011, 28(7): 1136-1139
[14] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 1136-1139
[15] ZENG Ran**, YANG Ya-Ping, . Repulsive and Restoring Casimir Forces Based on Magneto-Optical Effect[J]. Chin. Phys. Lett., 2011, 28(5): 1136-1139
Viewed
Full text


Abstract