Chin. Phys. Lett.  2007, Vol. 24 Issue (5): 1129-1132    DOI:
Original Articles |
Hall Effects on Unsteady Magnetohydrodynamic Flow of a Third Grade Fluid
K. Fakhar 1,2;XU Zhen-Li 3;CHENG Yi3
1Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei 2300262Department of Science in Engineering, Faculty of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Malaysia3Department of Mathematics, University of Science and Technology of China, Hefei 230026
Cite this article:   
K. Fakhar, XU Zhen-Li, CHENG Yi 2007 Chin. Phys. Lett. 24 1129-1132
Download: PDF(256KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible third grade fluid bounded by an infinite porous plate is studied with the Hall effect. An external uniform magnetic field is applied perpendicular to the plate and the fluid motion is subjected to a uniform suction and injection. Similarity transformations are employed to reduce the non-linear equations governing the flow under discussion to two ordinary differential
equations (with and without dispersion terms). Using the finite difference scheme, numerical solutions represented by graphs with reference to the various involved parameters of interest are discussed and appropriate conclusions are drawn.
Keywords: 02.20.Sv      05.20.Jj      47.50.-d     
Received: 18 December 2006      Published: 23 April 2007
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  05.20.Jj (Statistical mechanics of classical fluids)  
  47.50.-d (Non-Newtonian fluid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I5/01129
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
K. Fakhar
XU Zhen-Li
CHENG Yi
[1] Johnston B M, Johnston P R, Corney S and Kilpatrick D 2006 J. Biomech. 39 1116
[2] Ruiz-Viera M J, Delgado M A, Franco J M, Sanchez M C andGallegos C 2006 Int. J. Multiphase Flow 32 232
[3] Das S and Chakraborty S 2006 Anal. Chim. Acta 559 15
[4] Hayat T, Khana M and Wang Y 2006 Commun. Nonlin. Sci.Numer. Simul. 11 297
[5] Hameed M and Nadeem S 2006 J. Math. Anal. Appl. 325 724
[6] Attia H A and Aboul-Hassan A L 2001 Appl. Math. Model. 25 1089
[7] Ghosh S K 2002 Czech. J. Phys. 52 51
[8] Megahed A A, Komy S R and Afify A A 2003 Int. J. NonlinearMech. 38 513
[9] Hayat T, Wang Y and Hutter K 2004 Int. J. Nonlinear Mech. 39 1027
[10] Asghar S, Mohyuddin M R and Hayat T 2005 Int. J. HeatMass Tran. 48 599
[11] Maleque K A and Sattar M A 2005 Int. J. Heat Mass Tran. 48 4963
[12] Palumbo L J and Platzeck A M 2006 J. Plasma Phys. 72 457
[13] Ashraf E E and Mohyuddin M R 2005 Iranian J. Sci.Technol. Trans. B 29 549
[14] Hayat T, Kara A H and Momoniat E 2003 Int. J. NonlinearMech. 38 1533
[15] Ayub M, Rasheed A and Hayat T 2003 Int. J. Eng. Sci. 41 2091
[16] Cowling T G 1957 Magnetohydrodynamics (New York:Interscience) p101
[17] Ibragimov N K 1999 { Elementrary Lie Group Analysis andOrdinary Differential Equations} (New York: Wiley)
[18] Tang X Y and Lou S Y 2002 Chin. Phys. Lett. 19 1
[19] Xiaoda J, Chen C, Zhang J E and Yishen L 2004 J. Math.Phys. 45 448
[20] Hayat T and Kara A H 2006 Math. Comput. Model. 43 132
[21] Fakhar K, Cheng Y, Xiaoda J and Xiaodong L 2006 Int. J.Eng. Sci. 44 889
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 1129-1132
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 1129-1132
[3] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 1129-1132
[4] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 1129-1132
[5] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 1129-1132
[6] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 1129-1132
[7] T. Hayat, Liaqat Ali. Khan, R. Ellahi**, S. Obaidat . Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame[J]. Chin. Phys. Lett., 2011, 28(5): 1129-1132
[8] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 1129-1132
[9] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 1129-1132
[10] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 1129-1132
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 1129-1132
[12] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 1129-1132
[13] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 1129-1132
[14] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 1129-1132
[15] N. Ali**, M. Sajid, T. Javed, Z. Abbas . An Analysis of Peristaltic Flow of a Micropolar Fluid in a Curved Channel[J]. Chin. Phys. Lett., 2011, 28(1): 1129-1132
Viewed
Full text


Abstract