Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 835-838    DOI:
Original Articles |
Stochastic Resonance in Neural Systems with Small-World Connections
YUAN Wu-Jie 1,2;LUO Xiao-Shu 1;YANG Ren-Huan 1
1College of Physics and Electronic Engineering, Guangxi Normal University, Guilin 5410042Department of Physics, Huaibei Coal Industry Teachers' College, Huaibei 235000
Cite this article:   
YUAN Wu-Jie, LUO Xiao-Shu, YANG Ren-Huan 2007 Chin. Phys. Lett. 24 835-838
Download: PDF(276KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the stochastic resonance (SR) in Hodgkin--Huxley (HH) neural ystems with small-world (SW) connections under the noise synaptic current and periodic stimulus, focusing on the dependence of properties of SR on coupling strength c. It is found that there exists a critical coupling strength c* such that if c<c*, then the SR can appear on the SW neural network. specially, dependence of the critical coupling strength c* on the number of neurons N shows the monotonic even almost linear increase of c* as N increases and c* on the SW network is smaller than that on the random network. For the effect of the SW network on the phenomenon of SR, we show that decreasing the connection-rewiring probability p of the network topology leads to an enhancement of SR. This indicates that the SR on the SW
network is more prominent than that on the random network (p=1.0). In addition, it is noted that the effect becomes remarkable as coupling strength increases. Moreover, it is found that the SR weakens but resonance range becomes wider with the increase of c on the SW neural network.
Keywords: 87.18.Sn      05.45.-a      84.35.+i      87.18.Bb     
Received: 06 November 2006      Published: 08 February 2007
PACS:  87.18.Sn (Neural networks and synaptic communication)  
  05.45.-a (Nonlinear dynamics and chaos)  
  84.35.+i (Neural networks)  
  87.18.Bb  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0835
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YUAN Wu-Jie
LUO Xiao-Shu
YANG Ren-Huan
[1]Benzi R, Sutera A and Vulpiani A 1981 J. Phys. A 14 453
[2]Gang H, Ditzinger T, Ning C Z and Haken H 1993 Phys. Rev.Lett. 71 807
[3]Liu Z and Lai Y C 2001 Phys. Rev. Lett. 86 4737
[4]Lai Y C and Liu Z 2001 Phys. Rev. E 64 066202
[5]Longtin A 1993 J. Stat. Phys. 70 309
[6]Wiesenfeld K, Pierson D, Pantazelou E, Dames C and Moss F 1994 Phys. Rev. Lett. 72 2125
[7]Levin J E and Miller J P 1996 Nature 380 165
[8]Collins J J, Imhoff T T and Grigg P 1996 Nature 383 770
[9]Bulsara A R, Elston T C, Doering C R, Lowen S B and LindenbergK 1996 Phys. Rev. E 53 3958
[10]Shimokawa T, Pakdaman K and Sato S 1999 Phys. Rev. E 59 3427
[11]Kang Y M, Xu J X and Xie Y 2005 Chaos, Solitons $\&$Fractals 25 165
[12]Shimokawa T, Rogel A, Pakdaman K and Sato S 1999 Phys.Rev. E 59 3461
[13]Lindner B and Schimansky-Geier L 2001 Phys. Rev. Lett. 86 2934
[14]Liu Z, Lai Y C and Nachman A 2002 Phys. Lett. A 297 75
[15]Patel A and Kosko B 2005 Neural Networks 18 467
[16]Collins J J, Chow C C and Imhoff T T 1995 Nature 376 236
[17]Stocks N G and Mannella R 2001 Phys. Rev. E 64 30902
[18]Lee S G and Kim S 1999 Phys. Rev. E 60 826
[19]Lee S G and Kim S 2005 Phys. Rev. E 72 061906
[20]Chik D T W, Wang Y and Wang Z D 2001 Phys. Rev. E 64 021913
[21]Hasegawa H 2002 Phys. Rev. E 66 021902
[22]Tanabe S, Sato S and Pakdaman K 1999 Phys. Rev. E 60 7235
[23]Liu F, Hu B and Wang W 2000 Phys. Rev. E 63 31907
[24]Watts D J and Strogatz S H 1998 Nature 393 440
[25]Lin M and Chen T L 2005 Phys. Rev. E 71 016133
[26]Lago-Fern\'andez L F, Huerta R, Corbacho F and Sig\"uenza J A2000 Phys. Rev. Lett. 84 2758
[27]Yuan W J, Luo X S, Wang B H, Wang W X, Fang J Q and Jiang P Q2006 Chin. Phys. Lett. 23 3115
[28]Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22 1329
[29]Kwon O and Moon H T 2002 Phys. Lett. A 298 319
[30]Simard D, Nadeau L and Kr\"oger H 2005 Phys. Lett. A 336 8
[31]Aguirre C, Huerta R, Corbacho F and Pascual P 2002 Lecture Notes in Computer Science 2415 27
[32]Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[33]Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775
[34]Arieli A, Shooham D, Hildesheim R and Grinvald A 1995 J.Neurophysiol. 73 2072
[35]Wang X F and Chen G 2002 Circuits and Systems 49 54
[36]Wang Y, Chik D T W and Wang Z D 2000 Phys. Rev. E 61 740
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 835-838
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 835-838
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 835-838
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 835-838
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 835-838
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 835-838
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 835-838
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 835-838
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 835-838
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 835-838
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 835-838
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 835-838
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 835-838
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 835-838
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 835-838
Viewed
Full text


Abstract