Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 818-821    DOI:
Original Articles |
Enhanced Efficiency of Polymer: Fullerene Bulk Heterojunction Solar Cells with the Insertion of Thin TiO2 Layer near the LiF/Al Electrode
LI Yan;HOU Yan-Bing;JIN Hui;SHI Quan-Min;LIU Jun;SUN Xin;CHANG Xiao-Wei
Key Laboratory of Luminescence and Optical Information (Ministry of Education), Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044
Cite this article:   
LI Yan, HOU Yan-Bing, JIN Hui et al  2007 Chin. Phys. Lett. 24 818-821
Download: PDF(258KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The insertion layer of TiO2 between polymer-fullerene blend and LiF/Al electrode is used to enhance the short-circuit current I sc and fill factor (FF). The solar cell based on the blend of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and C60 with the modifying layer of TiO2 (about 20nm) shows the open-circuit Voc of about 0.62V, short circuit current Isc of about 2.35mA/cm2, filling factor FF of about 0.284, and the power conversion efficiency (PCE) of about 2.4% under monochromatic light (500nm) photoexcitation of about 17mW/cm 2. Compared to cells without the TiO2
layer, the power conversion efficiency increases by about 17.5%. Similar effect is also obtained in cells with the undoped MEH-PPV structure of ITO/PEDOT:PASS/MEH-PPV/(TiO2)LiF/Al. The improved solar cell performance can be attributed to enhanced carrier extraction efficiency at the active layer/electrode interfaces when TiO2 is inserted.
Keywords: 72.40.+w      72.80.Le     
Received: 14 November 2006      Published: 08 February 2007
PACS:  72.40.+w (Photoconduction and photovoltaic effects)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0818
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yan
HOU Yan-Bing
JIN Hui
SHI Quan-Min
LIU Jun
SUN Xin
CHANG Xiao-Wei
[1] Krebs F C et al 2004 Sol. Energy Mater. Sol. Cells 83125 Shaheen S E, Ginley D S and Jabbour G E 2005 MRS Bull. 3010
[2] Fan Q, McQuiuin B and Bradley D D C et al 2001 Chem. Phys.Lett. 347 325
[3] Yu G et al 1995 Science 270 1789
[4] Brabec C J et al 2004 Sol. Energy Mater. Sol. Cells 83273
[5] Wienk M M et al 2003 Angew. Chem. Int. Ed. 42 3371
[6] Lu K Q et al 2004 Chin. Phys. Lett. 21 1086
[7] Jin Hui et al 2006 Chin. Phys. Lett. 23 693
[8]J. Y. Kim et al 2005 Organic Photovoltaics VI 5938 59381
[9] Bhuiyan M K H and Mieno T 2003 Thin Solid Films 441 187
[10] Sariciftci N S et al 1992 Science 258 1474
[11] Smilowitz L et al 1993 Phys. Rev. B 47 13835
[12] Kraabel B et al 1993 Chem. Phys. Lett. 213 389
[13] Lee C H et al 1993 Phys. Rev. B 48 15425
[14] Morita S, Zakhidov A A and Yoshino K 1992 Solid StateCommun. 82 249
[15] Wei X et al 1994 Phys. Rev. B 49 17480
Related articles from Frontiers Journals
[1] WANG Li-Guo**, ZHANG Huai-Wu, TANG Xiao-Li, LI Yuan-Xun, ZHONG Zhi-Yong. Charge Transport and Electrical Properties in Poly(3-hexylthiophene) Polymer Layers[J]. Chin. Phys. Lett., 2012, 29(1): 818-821
[2] ZHAO Hong-Xia, ZHAO Hui**, CHEN Yu-Guang . Dynamical Process of Dissociation of Excitons in Polymer Chains with Impurities[J]. Chin. Phys. Lett., 2011, 28(9): 818-821
[3] LI Bi-Xin, CHEN Jiang-Shan, ZHAO Yong-Biao, MA Dong-Ge** . Frequency-Dependent Electrical Transport Properties of 4,4',4[J]. Chin. Phys. Lett., 2011, 28(5): 818-821
[4] KONG Fang-Fang, LIU Cong-Cong, XU Jing-Kun**, JIANG Feng-Xing, LU Bao-Yang, YUE Rui-Rui, LIU Guo-Dong, WANG Jian-Min . Simultaneous Enhancement of Electrical Conductivity and Seebeck Coefficient of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Films Treated with Urea[J]. Chin. Phys. Lett., 2011, 28(3): 818-821
[5] SHI Wei**, MA Xiang-Rong, . Peculiar Transmission Characteristics of the Large Gap Semi-Insulating GaAs Photoconductive Switch[J]. Chin. Phys. Lett., 2011, 28(12): 818-821
[6] LIU Xiu-Huan, CHEN Zhan-Guo**, JIA Gang, WANG Hai-Yan, GAO Yan-Jun, LI Yi . A [111]-Cut Si Hemisphere Two-Photon Response Photodetector[J]. Chin. Phys. Lett., 2011, 28(11): 818-821
[7] JIANG Chun-Xia, YANG Xiao-Yan, ZHAO Kai, WU Xiao-Ming, YANG Li-Ying, CHENG Xiao-Man, WEI Jun, YIN Shou-Gen, ** . High Performance Polymer Field-Effect Transistors Based on Thermally Crosslinked Poly(3-hexylthiophene)[J]. Chin. Phys. Lett., 2011, 28(11): 818-821
[8] SHI Wei, **, JIA Ji-Qiang, JI Wei-Li, GUI Huai-Meng . Flashover in Back-Triggered Photoconductive Semiconductor Switch[J]. Chin. Phys. Lett., 2011, 28(1): 818-821
[9] HU Ling, SUN Yu-Ping, WANG Bo, LUO Xuan, SHENG Zhi-Gao, ZHU Xue-Bin, SONG Wen-Hai, YANG Zhao-Rong, DAI Jian-Ming. Modulation of Insulator-Metal Transition Temperature by Visible Light in La7/8Sr1/8MnO3 Thin Film[J]. Chin. Phys. Lett., 2010, 27(9): 818-821
[10] LIANG Chun-Jun, ZOU Hui, HE Zhi-Qun, ZHANG Chun-Xiu, LI Dan, WANG Yong-Sheng. Polymer Light-Emitting Diode Using Conductive Polymer as the Anode Layer[J]. Chin. Phys. Lett., 2010, 27(9): 818-821
[11] SHI Wei, ZHANG Zhen-Zhen, HOU Lei. Electrical Field Distribution in Terahertz SI-GaAs Photoconductive Antennas[J]. Chin. Phys. Lett., 2010, 27(8): 818-821
[12] LI Rong-Hua, MENG Wei-Min, PENG Ying-Quan, MA Chao-Zhu, WANG Run-Sheng, XIE Hong-Wei, WANG Ying. Numerical Study on Open-Circuit Voltage of Single Layer Organic Solar Cells with Schottky Contacts: Effects of Molecular Energy Levels, Temperature and Thickness[J]. Chin. Phys. Lett., 2010, 27(8): 818-821
[13] QIAO Xian-Feng, CHEN Jiang-Shan, MA Dong-Ge. Comparative Study on Hole Transport in N,N'-bis(naphthalen-1-yl)-N,N'- bis(pheny) Benzidine and 4,4',4''-tri(N-carbazolyl)triphenylamine[J]. Chin. Phys. Lett., 2010, 27(8): 818-821
[14] LI Zhong-Liang, WU Zhao-Xin, JIAO Bo, MAO Gui-Lin, HOU Xun. Capacitance of Organic Schottky Diodes Based on Copper Phthalocyanine (CuPc)[J]. Chin. Phys. Lett., 2010, 27(6): 818-821
[15] LU Bao-Yang, LIU Cong-Cong, LU Shan, XU Jing-Kun, JIANG Feng-Xing, LI Yu-Zhen, ZHANG Zhuo. Thermoelectric Performances of Free-Standing Polythiophene and Poly(3-Methylthiophene) Nanofilms[J]. Chin. Phys. Lett., 2010, 27(5): 818-821
Viewed
Full text


Abstract