Original Articles |
|
|
|
|
Structural and Thermodynamic Properties of Gallium Arsenide with Hexagonal Wurtzite Structure from First-Principles Analysis |
CUI Hong-Ling 1;ZHANG Wei 1;CHENG Yan 1,2;CHEN Xiang-Rong 1,2,3 |
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 2 College of Physical Science and Technology, Sichuan University,Chengdu 6100643 International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 |
|
Cite this article: |
CUI Hong-Ling, ZHANG Wei, CHENG Yan et al 2007 Chin. Phys. Lett. 24 814-817 |
|
|
Abstract A first-principles plane wave method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) is performed to calculate the lattice parameters, the bulk modulus B 0 and its pressure derivative B0' of the hexagonal wurtzite GaAs (w-GaAs) by the Cambridge serial total energy package (CASTEP). Our calculations show that the most stable structure of the w-GaAs corresponds to the axial ratio c/a=1.651 and the internal parameter u= 0.374, consistent with other theoretical results. Also, the thermodynamic properties of the w-GaAs are investigated from the quasi-harmonic Debye model. The dependences of the normalized lattice parameters a/a0, c/c0, the axial ratio c/a, the normalized volume V/V0, the heat capacity Cv and the thermal expansion α on pressure P and temperature T are also obtained successfully.
|
Keywords:
71.15.Mb
65.40.-b
71.20.Nr
|
|
Received: 12 October 2006
Published: 08 February 2007
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
|
|
|
[1] Mujica A, Needs R J and Munoz A 1995 Phys. Rev. B 528881 [2] Nelmes R J, McMahon M I, Wright N G and Allan D R 1994 Phys.Rev. Lett. 73 1805 [3] Durandurdu M and Drabold D A 2002 Phys. Rev. B 66045209 [4] Villars P and Calvert L 1985 Pearson's Handbook ofCrystallographic Data for Intermetallic Phase (Materials Park, OH: American Societyof Metals) [5]Wyckoff R W G, 1963 Crystal Structure (New York: Interscience)2nd edn vol 1 [6] Schubert K 1964 Kristallstruktren ZweikomponentigerPhasen (Berlin: Springer) [7] Hellwege K H and Hellwege A H 1971 Structural Data of theElements and Intermetallic Phases, New Series, Group I$\!$I$\!$I(Berlin: Springer) vol 6 17a 17b 17c 17d [8] Parthe E 1964 Crystal Chemistry of TetrahedralStructures (New York: Gordon and Breach) [9] Karsten A, Kai N, Janne N and Antti K 2002 Phys. Rev. B 66 035205 [10] Lu L Y, Chen X R, Yu B R and Gou Q Q 2006 Chin. Phys. 15 802 [11] Li Y H, Gong X G and Wei S H 2006 Appl. Phys. Lett. 88 042104 [12] Wieland K A, Wang Y and Solin S A 2006 Phys. Rev. B 73 155305 [13] Daeubler J, Glunk M, Schoch W, Limmer W and Sauer R 2006 Appl. Phys. Lett. 88 051904 [14] Yun Y B, Lee J L and Jang Y A 2006 J. Appl. Phys. 99 08J101 [15] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D1992 Rev. Mod. Phys. 64 1045 [16] Milman V, Winkler B, White J A, Packard C J, Payne M C,Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895 [17] Blanco M A, Francisco E and Luana V 2004 Comput. Phys.Commun. 158 57 [18] Vanderbilt D 1990 Phys. Rev. B 41 7892 [19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev.Lett. 77 3865 [20] Poirier J P and Tarantola A 1998 Phys. Earth PlanetInter. 109 1 [21] Yeh C Y, Lu Z W, Froyen S and Zunger A 1992 Phys. Rev.B 46 10086 [22] Bautista-Hernandez A, Perez-Arrieta L, Pol U and Rivas-Silva J F2003 Revista Mexicana De Fisica 49 9 [23] Guo H Z, Chen X R, Cai L C, Zhu J and Gao J 2005 SolidState Commun. 134 787 [24] Guo H Z, Chen X R, Zhu J Cai L C and Gao J 2005 Chin.Phys. Lett. 22 1764 [25] Li X F, Chen X R, Ji G F and Meng C M 2006 Chin. PhysLett. 23 925 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|