Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 786-789    DOI:
Original Articles |
Mechanical Yielding and Strength Behaviour of OFHC Copper in Planar Shock Waves
CHEN Da-Nian1;FAN Chun-Lei1;HU Jin-Wei1;WU Shan-Xing1;WANG Huan-Ran1;TAN Hua2;YU Yu-Ying2
1Mechanics and Materials Science Research Center, Ningbo University, Zhejiang 3152112Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900
Cite this article:   
CHEN Da-Nian, FAN Chun-Lei, HU Jin-Wei et al  2007 Chin. Phys. Lett. 24 786-789
Download: PDF(321KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is necessary to study the validation of strength models under planar shock loading in view of the fact that strength models for metals obtained at moderate strain rates are often used in the numerical simulations of shock wave phenomena. The variations of longitudinal stress, transverse stress and yield strength of oxygen-free high conductance (OFHC) copper with time under planar shock loading are obtained by using the manganin stress gauges and compared with the predicted results by the constructed seven constitutive models based on Y/G=constant and on G/B=constant (Y the yield strength, G the shear modulus, B the bulk modulus), respectively. It seems that the pressure, density, temperature and plastic strain dependence of the yield strength for OFHC copper under planar shock loading is essential to the
constitutive description.
Keywords: 62.50.+p      62.20.Fe      46.35.+z     
Received: 01 October 2006      Published: 08 February 2007
PACS:  62.50.+p  
  62.20.Fe  
  46.35.+z (Viscoelasticity, plasticity, viscoplasticity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0786
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Da-Nian
FAN Chun-Lei
HU Jin-Wei
WU Shan-Xing
WANG Huan-Ran
TAN Hua
YU Yu-Ying
[1] Steinberg D J, Cochran S G and Guinan M W 1980 J. Appl.Phys. 51 1498
[2] Tonks D L 1993 L 12641, uc-700 and uc704
[3] Preston D L, Tonks D L and Wallace D C 2003 J. Appl. Phys. 93 211
[4] Wallace D C 1981 Phys. Rev. B 24 5607
[5] Wilkins M L 1975 UCRL-51574
[6] Straub G K 1990 LA-11806-MS, DE91 005996
[7] Bernstein D, Godfrey C, Klein A and Shimmin W 1968 Research onManganin Pressure Transducers Nehaviour of Dense Media under HighDynamic Pressure (New York: Gordan and Breach) p 461
[8] Dremin A N and Kanel G I 1976 J. Appl. Mech. Tech.Phys. 17 263
[1976 Zh. Prikl. Mekh. Tekh. Fiz. 17 146]
[9] Dai L H, Yan M and Shen L T 2004 Chin. Phys. Lett. 21 707
[10] Chartagnac P F 1982 J. Appl.Phys. 53 948
[11] Gupta T M 1983 J. Appl. Phys. 54 6256
[12] Rosenberg Z and Partom Y 1985 J. Appl. Phys. 58 3072
[13] Millett J C F, Bourne N K and Rosenberg Z 1996 J. Phys. D:Appl. Phys. 29 2466
[14] Johnson G R and Cook W H 1983 Proc. Seventh Int.Symposium onBallistics (Hague April 1983) p 541
[15] Zerilli F J and Armstrong R W 1987 J. Appl.Phys. 611816
[16] Rule W K and Jones S E 1998 Int. J. Impact Engin. 21609
Related articles from Frontiers Journals
[1] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 786-789
[2] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 786-789
[3] ZONG Hai-Tao, MA Ming-Zhen, ZHANG Xin-Yu, QI Li, LI Gong, JING Qin, LIU Ri-Ping** . Formation and Compression Behavior of Two-Phase Bulk Metallic Glasses with a Minor Addition of Aluminum[J]. Chin. Phys. Lett., 2011, 28(3): 786-789
[4] SHI Li-Wei, **, DUAN Yi-Feng, YANG Xian-Qing, TANG Gang . Phonon and Elastic Instabilities in Zincblende TlN under Hydrostatic Pressure from First Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(10): 786-789
[5] QI Mei-Lan, **, ZHONG Sheng, FAN Duan, LUO Chao, HE Hong-Liang . Microscopic Characteristics of Damage Evolution in Ultrapure Aluminum under Tensile Loading[J]. Chin. Phys. Lett., 2011, 28(1): 786-789
[6] MA Dong-Fang, HOU Yan-Jun, CHEN Da-Nian**, WU Shan-Xing, WANG Huan-Ran . A Novel Impact Tension Testing for OFHC Copper Bars under Local Strain Controlled[J]. Chin. Phys. Lett., 2011, 28(1): 786-789
[7] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 786-789
[8] SHI Li-Wei, DUAN Yi-Feng, QIN Li-Xia. Structural Stability and Elastic Properties of Wurtzite TlN under Hydrostatic Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 786-789
[9] YANG Fan, ZHU Ke-Qin. Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop[J]. Chin. Phys. Lett., 2010, 27(3): 786-789
[10] YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem?[J]. Chin. Phys. Lett., 2010, 27(12): 786-789
[11] YOU Shu-Jie, CHEN Liang-Chen, JIN Chang-Qing. Hydrostaticity of Pressure Media in Diamond Anvil Cells[J]. Chin. Phys. Lett., 2009, 26(9): 786-789
[12] HOU Ri-Li, , PENG Jian-Xiang, JING Fu-Qian, ZHANG Jian-Hua, ZHOU Ping. Reshock Response of 2A12 Aluminum Alloy at High Pressures[J]. Chin. Phys. Lett., 2009, 26(9): 786-789
[13] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 786-789
[14] YU Yong, ZHAI Guang-Jie, JIN Chang-Qing. A Simple System to Measure Superconducting Transition Temperature at High Pressure[J]. Chin. Phys. Lett., 2009, 26(2): 786-789
[15] HU Kai-Xin, ZHU Ke-Qin. Mechanical Analogies of Fractional Elements[J]. Chin. Phys. Lett., 2009, 26(10): 786-789
Viewed
Full text


Abstract