Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 763-766    DOI:
Original Articles |
Supersonic Turbulent Boundary Layer: DNS and RANS
XU Jing-Lei1;MA Hui-Yang1
Department of Physics, Graduate School of the Chinese Academy of Sciences, PO Box 3908, Beijing 100049
Cite this article:   
XU Jing-Lei, MA Hui-Yang 2007 Chin. Phys. Lett. 24 763-766
Download: PDF(256KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We assess the performance of a few turbulence models for Reynolds averaged Navier--Stokes (RANS) simulation of supersonic boundary layers,
compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22(2005)1709] and Huang et al. [Sci. Chin.48(2005)614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365,000/in, and M = 4.5, Re =1.7×107/m, respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with
experiment is less satisfactory. The compressibility effect on the RANS models is discussed.
Keywords: 47.27.Eq      47.27.Nz      47.40.Ki     
Received: 10 October 2006      Published: 08 February 2007
PACS:  47.27.Eq  
  47.27.Nz  
  47.40.Ki (Supersonic and hypersonic flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0763
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Jing-Lei
MA Hui-Yang
[1] Rai M M, Gatski T B and Erlebacher G 1995 AIAA 95 0583
[2] Pirozzoli S, Grasso F and Gatski T B 2004 Phys. Fluids 16 530
[3] Gao H, Fu D X, Ma Y W and Li X Y 2005 Chin. Phys. Lett. 22 1709
[4] Guarini S E, Moser R D, Shariff K and Wray A 2000 J.Fluid Mech. 414 1
[5] Maeder T, Adams N A and Kleiser L 2001 J. Fluid Mech. 429 187
[6] Huang Z F, Cao W and Zhou H 2005 Sci. Chin. G 48 614
[7] Jone W P and Launder B E 1972 Int. J. Heat and MassTransfer 15 301
[8] Wilcox D C and Rubesin M W 1980 NASA TP 1517
[9] Menter F R 1994 AIAA J. 32 1598
[10] Craft T J, Launder B E and Suga K 1996 Int. J. HeatFluid Flow 17 108
[11] Morkovin M V 1961 Mechnique de la Turbulence ed A Favre(Paris: CNRS) p 367 (in French)
[12] Sarkar S, Erlebacher G, Hussaini M Y and Kreiss H 1991 J. Fluid Mech. 227 473
[13] Sarkar S 1992 Phys. Fluids A 4 2674
[14] Zeman O 1990 Phys. Fluids A 2 178
[15] El Baz A M and Launder B E 1993 Engineering TurbulenceModeling and Experiments (New York: Elsevier) p 63
[16] Krishnamurty V S and Shyy W 1997 Phys. Fluids 92769
[17] Fernholz H H and Finley P J 1977 AGARDograph 223
Related articles from Frontiers Journals
[1] Mithilesh Singh**, L. P. Singh, Akmal Husain . Landau–Stanyukovich Rule and the Similarity Parameter of Converging Shock Waves in Magnetogasdynamics[J]. Chin. Phys. Lett., 2011, 28(9): 763-766
[2] WANG Li, LU Xi-Yun** . The Effect of Mach Number on Turbulence Behaviors in Compressible Boundary Layers[J]. Chin. Phys. Lett., 2011, 28(6): 763-766
[3] L. P. Singh, Akmal Husain, M. Singh. An Approximate Analytical Solution of Imploding Strong Shocks in a Non-Ideal Gas through Lie Group Analysis[J]. Chin. Phys. Lett., 2010, 27(1): 763-766
[4] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 763-766
[5] HAN Jian, JIANG Nan .. Wavelet Cross-Spectrum Analysis of Multi-Scale Disturbance Instability and Transition on Sharp Cone Hypersonic Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 763-766
[6] LI Xin-Liang, FU De-Xun, MA Yan-Wen. Direct Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer at Ma=6[J]. Chin. Phys. Lett., 2006, 23(6): 763-766
[7] JIANG Nan, ZHANG Jin. Detecting Multi-Scale Coherent Eddy Structures and Intermittency in Turbulent Boundary Layer by Wavelet Analysis[J]. Chin. Phys. Lett., 2005, 22(8): 763-766
[8] GAO Hui, FU De-Xun, MA Yan-Wen, LI Xin-Liang. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer Flow[J]. Chin. Phys. Lett., 2005, 22(7): 763-766
[9] Feng-Chen LI, Yasuo KAWAGUCHI, Takehiko SEGAWA, Koichi HISHIDA. Stereoscopic Particle Image Velocimetry Investigation of Three-Dimensional Characteristics of Vortex Structure in a Turbulent Channel Flow[J]. Chin. Phys. Lett., 2005, 22(3): 763-766
[10] HU Kai-Heng, CHEN Kai. Relative Scaling Exponents and Intermittency in Compressible Turbulent Channel Flows[J]. Chin. Phys. Lett., 2005, 22(12): 763-766
[11] LIN Jian-Zhong, SUN Ke, LIN Jiang. Distribution of Orientations in Fibre Suspension Flowing in a Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2005, 22(12): 763-766
[12] WANG Bing, ZHANG Hui-Qiang, WANG Xi-Lin. Large Eddy Simulation of SGS Turbulent Kinetic Energy and SGS Turbulent Dissipation in a Backward-Facing Step Turbulent Flow[J]. Chin. Phys. Lett., 2004, 21(9): 763-766
[13] LIU Wei, JIANG Nan. Three Kinds of Velocity Structure Function in Turbulent Flows[J]. Chin. Phys. Lett., 2004, 21(10): 763-766
Viewed
Full text


Abstract