Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 759-762    DOI:
Original Articles |
Influence of Orbital Motion of Inner Cylinder on Eccentric Taylor Vortex Flow of Newtonian and Power-Law Fluids
FENG Shun-Xin;FU Song
Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
FENG Shun-Xin, FU Song 2007 Chin. Phys. Lett. 24 759-762
Download: PDF(274KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of inner cylinder orbital motion on Taylor vortex flow of Newtonian and power-law fluid are studied numerically. The results demonstrate that when the eccentricity is not small, the orbital motion influences the stability of the flow in a non-monotonic manner. The variations of the flow-induced forces on the inner cylinder versus orbital motion are also different from the cases in which the flow is two-dimensional and laminar.
Keywords: 47.11.Df      47.20.Qr      47.50.-d     
Received: 16 October 2006      Published: 08 February 2007
PACS:  47.11.Df (Finite volume methods)  
  47.20.Qr (Centrifugal instabilities (e.g., Taylor-Couette flow))  
  47.50.-d (Non-Newtonian fluid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0759
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Shun-Xin
FU Song
[1] Wei X 1997 Master thesis (The University of Tulsa)
[2] Escudier M P et al %, Gouldson I W, Oliveira P J and Pinho F T2000 Int. J. Heat Fluid Flow 21 92
[3] Escudier M P et al %, Oliveira P J and Pinho F T2002 Int. J. Heat Fluid Flow 23 52
[4] Fasel H and Booz O 1984 J. Fluid Mech. 138 21
[5] Wereley S T and Lueptow R M 1994 Exps. Fluids 19 1
[6] Wereley S T and Lueptow R M 1998 J. Fluid Mech. 364 59
[7] Eagles P M, Stuart J T and Diprima R C 1978 J. Fluid Mech. 87 209
[8] Oikawa M et al %, Karasudani T and Funakoshi M1989 J. Phys. Soc.Jpn. 58 2355
[9] Ashwin P and King G P 1995 J. Fluid Mech. 285 215
[10] Feng S, Li Q and Fu S 2006 Int. J. Numer. Meth. Fluids(accepted)
[11] Coronado-Matutti O, Souza Mendes P R and Carvalho M S 2004 J. Fluids Engin. 126 385
[12] Ferziger J H and Peric M 2002 Computational Methods for FluidDynamics 3rd edn (Berlin: Springer)
Related articles from Frontiers Journals
[1] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 759-762
[2] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 759-762
[3] T. Hayat, Liaqat Ali. Khan, R. Ellahi**, S. Obaidat . Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame[J]. Chin. Phys. Lett., 2011, 28(5): 759-762
[4] CHEN Cheng, GUO Zhi-Wei, WANG Bo-Fu, SUN De-Jun** . Transient Growth of Perturbation Energy in the Taylor–Couette Problem with Radial Flow[J]. Chin. Phys. Lett., 2011, 28(5): 759-762
[5] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 759-762
[6] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 759-762
[7] N. Ali**, M. Sajid, T. Javed, Z. Abbas . An Analysis of Peristaltic Flow of a Micropolar Fluid in a Curved Channel[J]. Chin. Phys. Lett., 2011, 28(1): 759-762
[8] S. Nadeem, Naeem Faraz. Thin Film Flow of a Second Grade Fluid over a Stretching/Shrinking Sheet with Variable Temperature-Dependent Viscosity[J]. Chin. Phys. Lett., 2010, 27(3): 759-762
[9] TAO Jian-Jun, TAN Wen-Chang. Relaxation Oscillation of Thermal Convection in Rotating Cylindrical Annulus[J]. Chin. Phys. Lett., 2010, 27(3): 759-762
[10] YANG Fan, ZHU Ke-Qin. Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop[J]. Chin. Phys. Lett., 2010, 27(3): 759-762
[11] M. Sajid, N. Ali, T. Javed, Z. Abbas. Stretching a Curved Surface in a Viscous Fluid[J]. Chin. Phys. Lett., 2010, 27(2): 759-762
[12] YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem?[J]. Chin. Phys. Lett., 2010, 27(12): 759-762
[13] YANG Yan, WU Guan-Hao, YU Yong-Liang, TONG Bing-Gang. Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics[J]. Chin. Phys. Lett., 2008, 25(2): 759-762
[14] K. Fakhar, XU Zhen-Li, CHENG Yi. Hall Effects on Unsteady Magnetohydrodynamic Flow of a Third Grade Fluid[J]. Chin. Phys. Lett., 2007, 24(5): 759-762
Viewed
Full text


Abstract