Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 751-754    DOI:
Original Articles |
In Vivo Monitoring of Neovascularization in Tumour Angiogenesis by Photoacoustic Tomography
XIANG Liang-Zhong;XING Da;GU Huai-Min;ZHOU Fei-Fan; YANG Di-Wu;ZENG
Lv-Ming;YANG Si-Hua
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631
Cite this article:   
XIANG Liang-Zhong, XING Da, GU Huai-Min et al  2007 Chin. Phys. Lett. 24 751-754
Download: PDF(717KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Photoacoustic tomography (PAT) is presented to in vivo monitor neovascularization in tumour angiogenesis with high resolution and high
contrast images in a rat. With a circular scan system, the photoacoustic signal, generated by laser pulses at a wavelength of 532nm from a Q-switched Nd:YAG laser, is captured by a hydrophone with a diameter of 1mm and a sensitivity of 850nV/Pa. The vascular structure around the rat tumour is imaged clearly, with optimal contrast, because blood has strong absorption near this wavelength. Serial noninvasive photoacoustic images of neovascularization in tumour angiogenesis are also obtained consecutively from a growing tumour implanted under the skin of a rat over a period of two weeks. This work demonstrates that PAT can potentially provide a powerful tool for tumour angiogenesis detection in cancer research. It will bring us closer to clinical applications for tumour diagnosis and treatment monitoring.
Keywords: 43.25.+d      87.57.Ce      43.60.+d      43.80.+p     
Received: 04 August 2006      Published: 08 February 2007
PACS:  43.25.+d  
  87.57.Ce  
  43.60.+d (Acoustic signal processing)  
  43.80.+p (Bioacoustics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0751
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIANG Liang-Zhong
XING Da
GU Huai-Min
ZHOU Fei-Fan
YANG Di-Wu
ZENGLv-Ming
YANG Si-Hua
[1] Judah F 1995 Nat. Med. (N.Y.) 1 27
[2] Folkman J 1996 Eur. J. Cancer 32A 2534
[3]Hasan J, Byers R, Jayson G C 2002 Br. J. Cancer 86 1566
[4] Collingridge D R, Carroll V A, Glaser M et al 2002 CancerRes. 62 5912
[5] Knopp M V, von Tengg-Kobligk H and Choyke P L 2003 Mol. CancerTheor. 2 419
[6] Xu X F, Tang Z L and Wang J 2003 Acta Optica Sinica 231103 (in Chinese)
[7] Wang X, Pang Y, Ku G et al 2003 Nature Biotechnol. 21803
[8] Yin B Z, Xing D and Wang Y 2004 Phys. Med. Biol. 491339
[9] Gu H M, Yang S H and Xiang L Z 2006 Prog. Biochem.Biophys. 35 431
[10] Zeng L M, Xing D and Gu H M 2006 Chin. Phys. Lett. 231215
[11] Su Y, Wang R K, Zhang F et al 2006 Chin. Phys. Lett. 23 512
[12] Wang Y, Xing D, Zeng Y G et al 2004 Phys. Med. Biol. 49 3117
[13] Zeng Y G, Xing D and Fu H B 2005 Chin. J. Lasers 32 97
[14] Tan Y, Xing D, Wang Y et al 2005 SPIE 5630 668
[15] Maeda H 2001 Adv. Enzyme. Regul. 41 189
[16] Xiang L Z, Xing D and Gu H M 2006 Acta Phys. Sin.(accepted) (in Chinese)
[17] Yang D W, Xing D and Gu H M 2005 Appl. Phys. Lett. 87194101
[18] Yang D W, Xing D and Tan Y. 2006 Appl. Phys. Lett. 88174101
Related articles from Frontiers Journals
[1] QIU Yuan-Yuan, ZHENG Hai-Rong, ZHANG Dong** . Hysteretic Nonlinearity of Sub-harmonic Emission from Ultrasound Contrast Agent Microbubbles[J]. Chin. Phys. Lett., 2011, 28(4): 751-754
[2] LEI Bo**, MA Yuan-Liang, YANG Kun-De . Experiment Observation on Acoustic Forward Scattering for Underwater Moving Object Detection[J]. Chin. Phys. Lett., 2011, 28(3): 751-754
[3] YU Li-Li**, SHOU Wen-De, HUI Chun** . Theoretical Calculation of a Focused Acoustic Field from a Linear Phased Array on a Concave Cylindrical Transducer[J]. Chin. Phys. Lett., 2011, 28(10): 751-754
[4] ZHANG Bi-Xing, SHI Fang-Fang, WU Xian-Mei, GONG Jun-Jie, ZHANG Cheng-Guang. Imaging for Borehole Wall by a Cylindrical Linear Phased Array[J]. Chin. Phys. Lett., 2010, 27(9): 751-754
[5] LIU Zhen-Bo, FAN Ting-Bo, GUO Xia-Sheng, ZHANG Dong. Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound[J]. Chin. Phys. Lett., 2010, 27(9): 751-754
[6] HUANG Bei, ZHENG Hai-Rong, ZHANG Dong. Asymmetric Oscillation and Acoustic Response from an Encapsulated Microbubble Bound within a Small Vessel[J]. Chin. Phys. Lett., 2010, 27(6): 751-754
[7] YANG Di-Wu, XING Da, ZHAO Xue-Hui, PAN Chang-Ning, FANG Jian-Shu. A Combined Reconstruction Algorithm for Limited-View Multi-Element Photoacoustic Imaging[J]. Chin. Phys. Lett., 2010, 27(5): 751-754
[8] FAN Ting-Bo, LIU Zhen-Bo, ZHANG Zhe, ZHANG Dong, GONG Xiu-Fen. Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound[J]. Chin. Phys. Lett., 2009, 26(8): 751-754
[9] QIU Chang-Chun, ZHANG Bi-Xing, ZHANG Yu-Jun, CUI Zhi-Wen. Coupling of Acoustical Plane p-Wave to a Cased Borehole[J]. Chin. Phys. Lett., 2009, 26(11): 751-754
[10] YU Guang-Zheng, XIE Bo-Sun, RAO Dan,. Effect of Sound Source Scattering on Measurement of Near-Field Head-Related Transfer Functions[J]. Chin. Phys. Lett., 2008, 25(8): 751-754
[11] LIU Ming-He, ZHANG Dong, GONG Xiu-Fen. Nonlinear Effect on Focusing Gain of a Focusing Transducer with a Wide Aperture Angle[J]. Chin. Phys. Lett., 2007, 24(8): 751-754
[12] ZHONG Xiao-Li, XIE Bo-Sun. A Novel Model of Interaural Time Difference Based on Spatial Fourier Analysis[J]. Chin. Phys. Lett., 2007, 24(5): 751-754
[13] MAO Jie, LI Ming-Xuan, WANG Xiao-Min. Thickness Determination for a Two-Layered Composite of a Film and a Plate by Low-Frequency Ultrasound[J]. Chin. Phys. Lett., 2007, 24(3): 751-754
[14] ZHANG Dong, ZHOU Lin, SI Li-Sheng, GONG Xiu-Fen. A Simple Model for Nonlinear Confocal Ultrasonic Beams[J]. Chin. Phys. Lett., 2007, 24(1): 751-754
[15] ZENG Lü-Ming, XING Da, GU Huai-Min, YANG Di-Wu, YANG Si-Hua, XIANG Liang-Zhong. Fast Microwave-Induced Thermoacoustic Tomography Based on Multi-Element Phase-Controlled Focus Technique[J]. Chin. Phys. Lett., 2006, 23(5): 751-754
Viewed
Full text


Abstract