Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 734-737    DOI:
Original Articles |
Flat Supercontinuum Generation at 1550nm in a Dispersion-Flattened Microstructure Fibre Using Picosecond Pulse
XU Yong-Zhao;REN Xiao-Min;WANG Zi-Nan;ZHANG Xia;HUANG Yong-Qing
Key Laboratory of Optical Communication and Lightwave Technologies of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
XU Yong-Zhao, REN Xiao-Min, WANG Zi-Nan et al  2007 Chin. Phys. Lett. 24 734-737
Download: PDF(255KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The generation of a flat supercontinuum of over 80nm in the 1550nm region by injecting 1.6 ps 10 GHz repetition rate optical pulses into an 80-m-long dispersion-flattened microstructure fibre is demonstrated. The fibre has small normal dispersion with a variation smaller than 1.5 (ps.nm-1.km-1) between 1500 and 1650nm. The generated supercontinuum ranging from 1513 to 1591nm has the flatness of ±1.5dB and it is not so flat in the range of several
nanometres around the pump wavelength 1552nm. Numerical simulation is
also used to study the effect of optical loss, fibre parameters and pumping conditions on supercontinuum generation in the dispersion-flattened microstructure fibre, and can be used for further optimization to generate flat broad spectra.
Keywords: 42.65.Tg      42.81.Qb      42.81.Dp      42.81.Cn     
Received: 13 September 2006      Published: 08 February 2007
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0734
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Yong-Zhao
REN Xiao-Min
WANG Zi-Nan
ZHANG Xia
HUANG Yong-Qing
[1] Yamada E, Takara H, Ohara T et al 2001 Electron. Lett. 37 1534
[2] Takara H, Ohara T and Sato K 2003 Electron. Lett. 391078
[3] Ohara T, Takara T, Yamamoto T et al 2006 J. Lightw. Technol. 24 2311
[4] Mori K, Takara H, Kawanishi S et al 1997 Electron. Lett. 33 1807
[5] Mori K, Takara H and Kawanishi S 2001 J. Opt. Soc. Am. B 18 1780
[6] Xu Y Z, Ren X M, Zhang X et al 2005 Chin. Phys. Lett. 22 1923
[7] Dudley J M, Provino L, Grossard N et al 2002 J. Opt. Soc.Am. B 19 765
[8] Ravi Kanth Kumar V V, George A K, Reeves W H et al 2002 Opt.Exp. 10 1520
[9] Yu Y Qin, Ruan S C, Cheng C et al 2005 Chin. Phys. Lett. 22 380
[10] Yu Y Qin, Ruan S C, Du C L and Yao J Q 2005 Chin. Phys.Lett. 22 384
[11] Yusoff Z, Petropoulos P, Furusawa K et al 2003 IEEE Photon.Technol. Lett. 15 1689
[12] Yamamoto T, Kubota H and Kawanishi S 2003 Opt. Exp. 11 1537
[13] Nicholson J W, Yan M F, Wisk P et al 2003 Opt. Lett. 28 643
Related articles from Frontiers Journals
[1] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 734-737
[2] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 734-737
[3] M. A. Ismail,S. J. Tan,N. S. Shahabuddin,S. W. Harun,**,H. Arof,H. Ahmad. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches[J]. Chin. Phys. Lett., 2012, 29(5): 734-737
[4] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 734-737
[5] ZHAO Guang-Zhen, XIAO Xiao-Sheng, MEI Jia-Wei, YANG Chang-Xi. Multiple Dissipative Solitons in a Long-Cavity Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser[J]. Chin. Phys. Lett., 2012, 29(3): 734-737
[6] SUN Xiao-Qiang, CHEN Chang-Ming, LI Xiao-Dong, WANG Xi-Bin, YANG Tian-Fu, ZHANG Da-Ming, WANG Fei**, XIE Zhi-Yuan**. Polymer Electro-optic Modulator Linear Bias Using the Thermo-optic Effect[J]. Chin. Phys. Lett., 2012, 29(1): 734-737
[7] SHANG Chao, WU Chong-Qing**, LI Zheng-Yong, YANG Shuang-Shou** . A New Distributed Measurement of Birefringence Vectors by P-OTDR Assisted by a High Speed Polarization Analyzer[J]. Chin. Phys. Lett., 2011, 28(9): 734-737
[8] JING Lei, **, YAO Jian-Quan, . Single Mode Condition and Power Fraction of Air-Cladding Total Refractive Guided Porous Polymer Terahertz Fibers[J]. Chin. Phys. Lett., 2011, 28(8): 734-737
[9] WANG Yan-Bin**, HOU Jing**, CHEN Zi-Lun, CHEN Sheng-Ping, SONG Rui, LI Ying, YANG Wei-Qiang, LU Qi-Sheng . High-Efficiency Supercontinuum Generation at 12.8W in an All-Fiber Device[J]. Chin. Phys. Lett., 2011, 28(7): 734-737
[10] YANG Zhen-Jun, MA Xue-Kai, ZHENG Yi-Zhou, GAO Xing-Hui, LU Da-Quan, HU Wei** . Dipole Solitons in Nonlinear Media with an Exponential-Decay Nonlocal Response[J]. Chin. Phys. Lett., 2011, 28(7): 734-737
[11] ZHOU Liang, LI Zhi-Yong**, XIAO Xi, XU Hai-Hua, FAN Zhong-Chao, HAN Wei-Hua, YU Yu-De, YU Jin-Zhong. A Compact and Highly Efficient Silicon-Based Asymmetric Mach–Zehnder Modulator with Broadband Spectral Operation[J]. Chin. Phys. Lett., 2011, 28(7): 734-737
[12] ZHANG Xin-Ben, ZHU Xian, CHEN Xiang, PENG Jing-Gang, DAI Neng-Li, LI Jin-Yan** . Enhanced Visible Light Generation from 1µm Femtosecond Pulses within High-Δ Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2011, 28(5): 734-737
[13] FU Yu-Xin, ZHAO Jin-Yan, SONG Yue, DAI Guo-Xian, HUO Shu-Li, ZHANG Yan-Peng** . Polarized Spatial Splitting of Four-Wave Mixing Signal in Multi-Level Atomic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 734-737
[14] LI Jing, WANG Jian-Jun, XU Dang-Peng, LIN Hong-Huan, GENG Yuan-Chao, LI Ming-Zhong, DENG Ying, ZHU Na, ZHANG Rui, JING Feng** . Impact of Spectral Filter on Phase Modulation Pulse in Fiber Front End System[J]. Chin. Phys. Lett., 2011, 28(3): 734-737
[15] WANG He-Lin, YANG Ai-Jun**, LENG Yu-Xin, WANG Cheng . Modified Raman Response Model and Supercontinuum Generation in Flat Dispersion Photonic Crystal Fiber with Two-Zero Dispersion Wavelengths[J]. Chin. Phys. Lett., 2011, 28(3): 734-737
Viewed
Full text


Abstract