Original Articles |
|
|
|
|
Femtosecond Third-Order Optical Nonlinearity of Au:Bi2O3 Nanocomposite Films |
YOU Guan-Jun 1,2;ZHOU Peng 3;DONG Zhi-Wei 1,2;ZHANG Chun-Feng 1,2;CHEN Liang-Yao4;QIAN Shi-Xiong1 |
1Department of Physics, Fudan University, Shanghai 2004332State Key Lab for Surface Physics, Fudan University, Shanghai 2004333School of Microelectronics, State Key Lab of ASIC and Systems, Fudan University, Shanghai 2004334Department of Optical Science and Engineering, Fudan University, Shanghai 200433 |
|
Cite this article: |
YOU Guan-Jun, ZHOU Peng, DONG Zhi-Wei et al 2007 Chin. Phys. Lett. 24 730-733 |
|
|
Abstract Ultrafast third-order optical nonlinearities of the as-deposited and annealed Au:Bi2O3 nanocomposite films deposited by magnetron cosputtering are investigated by using femtosecond time-resolved optical Kerr effect (OKE) and pump--probe techniques. The third-order optical nonlinear susceptibility is estimated to be 2.6×10-10 esu and 1.8×10-9 esu at wavelength of 800nm, for the as-deposited and the annealed film, respectively. The OKE signal of the as-deposited film is nearly temporally symmetrical with a peak centred at zero delay time, which indicates the dominant contribution from intraband transition of conduction electrons. For the annealed film, the existence of a decay process in OKE signal implies the important contribution of hot electrons. These characteristics are in agreement with the hot electron dynamics observed in pump--probe measurement.
|
Keywords:
42.65.Re
42.70.Nq
78.67.Bf
|
|
Received: 12 September 2006
Published: 08 February 2007
|
|
PACS: |
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
|
|
|
[1] Keibig V and Vollmer M 1995 Optical Properties of MetalClusters (Berlin: Springer) [2] Ricard D, Roussignol P and Flytzanis C 1985 Opt. Lett. 10 511 [3] Liao H B, Xiao R F, Wang H, Wong K S and Wong G K L 1998 Appl.Phys. Lett. 72 1817 [4] Yang G, Wang W T, Yang G Z and Chen Z H 2003 Chin. Phys.Lett. 20 924 [5] Wang Q Q, Wang S F, Huang W T and Gong Q H 2005 J. Phys. D:Appl. Phys. 38 389 [6] Zhang Q F et al%, Liu W M, Xue Z Q, Wu J L, Wang S F, Wang D L and Gong Q H2003 Appl. Phys. Lett. 82 958 [7] Lee J H et al%, Belardi W, Furusawa K, Petropoulos P, Yusoff Z, Monro T M and Richardson D J2003 IEEE Photon. Technol. Lett. 15 440 [8] Li J, Olsson B E, Karsson M and Andrekson P A 2003 IEEEPhoton. Technol. Lett. 15 1770 [9] Wong K K Y, Marhic M E and Kazovsky L G 2003 IEEE Photon.Technol. Lett. 15 33 [10] Eaton D F 1991 Science 253 281 [11] Chen D J et al%, Ding S, Han J B, Zhou H J, Xiao S, Xiong G G and Wang Q Q2005 Chin. Phys. Lett. 22 2286 [12] Wang W T, Yang G, Wu W D and Chen Z H 2003 J. Appl. Phys 94 6837 [13] Liao H B, Wen W J, Wong G K L and Yang G Z 2003 Opt. Lett. 28 1790 [14] Zhou P et al%, You G J, Li Y G, Han T, Li J, Wang S Y, Chen L Y, Liu Y and Qian S X2003 Appl. Phys. Lett. 83 3876 [15] Tanahashi I, Manabe Y, Tohda T, Sasaki S and Nakamura A 1996 J. Appl. Phys. 79 1244 [16] Leontie L, Caraman M, Delibas M and Rusu G I 2001 Mater. Res.Bull. 36 1629 [17] Liu Y et al %, Li D, Zhu R Y, You G J, Qian S X, Yang Y and Shi J L2003 Appl. Phys. B 76 435 [18] Sutherland R L 1996 Handbook of Nonlinear Optics (New York:Dekker) [19] McMorrow D 1991 Opt. Commun. 86 236 [20] Hache F, Ricard D, Flytzanis C and Kreibig U 1988 Appl.Phys. A 47 347 [21] Voisin C, Fatti N Del, Christofilos D and Vall\'ee F 2001 J.Phys. Chem. B 105 2264 [22] Link S and El-Sayed M A 1999 J. Phys. Chem. B 103 4212 [23] Darugar Q et al %, Qian W, El-Sayed M A and Pileni M P2006 J. Phys. Chem. B 110 143 [24] Mi J et al %, Guo L J, Liu Y, Liu W M, You G J and Qian S X2003 Phys. Lett. A 310 486 [25] Liao H B et al %, Xiao R F, Fu J S, Wang H, Wong K S and Wong G K L1998 Opt. Lett. 23 388 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|