Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 727-729    DOI:
Original Articles |
Large and Ultrafast Third-Order Nonlinear Optical Properties of Ge-S Based Chalcogenide Glasses
CHU Sai-Sai1;WANG Shu-Feng1;TAO Hai-Zheng2;WANG Zhen-Wei1;YANG Hong1;LIN Chang-Gui3;GONG Qi-Huang1;ZHAO Xiu-Jian2
1State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 1008712Key Laboratory of Silicate Materials Science and Engineering (Ministry of Education), Wuhan University of Technology, Wuhan 4300703Key Laboratory of Advanced Materials and Rheological Properties (Ministry of Education), Xiangtan University, Xiangtan 4111005
Cite this article:   
CHU Sai-Sai, WANG Shu-Feng, TAO Hai-Zheng et al  2007 Chin. Phys. Lett. 24 727-729
Download: PDF(243KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report ultrafast third-order nonlinear optical (NLO) properties of several chalcogenide glasses GeSx (x=1.8, 2.0, 2.5) measured by femtosecond time-resolved optical Kerr gate technique at 820nm. The third-order nonlinear susceptibility of GeS 1.8 glass is determined to be as large as 1.41×10-12 esu, which is the maximum value of the third order nonlinear susceptibility
χ(3) for the three compositions investigated. The symmetric Gauss profiles of
optical Kerr signals reveal the nature of ultrafast nonlinear response of these samples, which are originated from the ultrafast polarization of the electron clouds. By detailed microstructural analysis of these glasses based on the chain-crossing model (CCM) and the random-covalent-network model (RCNM), it can be concluded that χ(3) value of GeSx glasses can be enhanced greatly by S--S covalent bonds or S3Ge--GeS3 ethane-like units.

Keywords: 42.65.An      61.43.Fs      42.65.-k      42.65.Re      78.47.+p     
Received: 29 September 2006      Published: 08 February 2007
PACS:  42.65.An (Optical susceptibility, hyperpolarizability)  
  61.43.Fs (Glasses)  
  42.65.-k (Nonlinear optics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  78.47.+p  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0727
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHU Sai-Sai
WANG Shu-Feng
TAO Hai-Zheng
WANG Zhen-Wei
YANG Hong
LIN Chang-Gui
GONG Qi-Huang
ZHAO Xiu-Jian
[1] Tanaka K 2005 J. Mater. Sci.: Mater. Electron. 16 633
[2] Feng L, Wang Y L, Ren Q, Zhang G H, Yang H L and Sun X B 2005Chin. Phys. Lett. 22 2834
[3] Zhu R Y, Qiu X Q, Chen Y and Qian S X 2006Chin. Phys. Lett. 23 622
[4] Li Z Y, Jin Z H, Kasatani K and Okamoto H 2005 Chin.Phys. Lett. 22 2282
[5] Wang G, Zhang Y, Cui Y P, Duan M Y and Liu M 2005 Opt.Commun. 249 311
[6] Hayden Y T and Hayden J S 1998 The Properties of OpticalGlass ed Bach H and Neuroth (Berlin: Springer) chap 2.6
[7] Liu Q M, Lu B, Zhao X J, Gan F X, Mi J and Qian S X 2006 Opt. Commun. 258 72
[8] Harbold J M, Ilday F \"O, Wise F W, Sanghera J S, Nguyen V Q, Shaw LB and Aggarwal I D 2002 Opt. Lett. 27 119
[9] Ogusu K, Yamasaki J, Maeda S, Kitao M and Minakata M 2004Opt. Lett. 29 265
[10] Bindra K S, Bookey H T, Kar A K, Wherrett B S, Liu X and Jha A2001 Appl. Phys. Lett. 79 1939
[11] Tao H Z, Mao S, Tong W and Zhao X J 2006 Mater. Lett.60 741
[12] Tao H Z, Zhao X J and Jing C B 2004 J. Mol. Struct. 697 23
[13] Gong Q H, Li J L, Zhang T Q and Yang H 1998 Chin. Phys.Lett. 15 30
[14] Minoshima K, Taiji M and Kobayashi T 1991 Opt. Lett.16 1683
[15] Wang X F, Wang Z W, Yu J G, Liu C L, Zhao X J and Gong Q H 2004Chem. Phys. Lett. 399 230
[16] Aber J E, Newstein M C and Garetz B A 2000 J. Opt. Soc.Am. B 17 120
[17] Falcao Filho E L, Bosco C A C, Maciel G S, de Araujo C B, Acioli LH, Nalin M and Messaddeq Y 2003 Appl. Phys. Lett. 83 1292
[18] Sugimoto N 2002 J. Am. Ceram. Soc. 85 1083
[19] Lucovsky G, Galeener F L, Keezer R C, Geils R H and Six H A 1974Phys. Rev. B 10 5134
[20] Tao H Z, Zhao X J, Jing C B, Yang H and Mao S 2005 SolidState Commun. 133 327
[21] Tao H Z, Mao S, Dong G P, Xiao H Y and Zhao X J 2006 Solid State Commun. 137 408
[22] Heo J, Yoon J M and Ryou S Y 1998 J. Non-Cryst. Solids238 115
[23] Cardinal T, Richardson K A, Shim H, Schulte A, Beatty R, Foulgoc KL, Meneghini C, Viens J F and Villeneuve A 1999 J. Non-Cryst.Solids 256/257 353
[24] Hajto E, Ewen P J and Qwen A E 1993 J. Non-Cryst.Solids 901 164
Related articles from Frontiers Journals
[1] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 727-729
[2] SHEN Jian, ZHANG Huai-Wu, LI Yuan-Xun. Terahertz Emission of Ferromagnetic Ni-Fe Thin Films Excited by Ultrafast Laser Pulses[J]. Chin. Phys. Lett., 2012, 29(6): 727-729
[3] XUAN Hong-Wen, WANG Nan, ZHANG Yong-Dong, WANG Zhao-Hua, WEI Zhi-Yi. A Tunable Ultrafast Source by Sum-Frequency Generation between Two Actively Synchronized Ultrafast Lasers[J]. Chin. Phys. Lett., 2012, 29(6): 727-729
[4] LI Zhong-Yu,**,XU Song,ZHOU Xin-Yu,ZHANG Fu-Shi. Alkali-Responsive Absorption Spectra and Third-Order Optical Nonlinearities of Imino Squaramides[J]. Chin. Phys. Lett., 2012, 29(5): 727-729
[5] HAN Ying,**,HOU Lan-Tian,ZHOU Gui-Yao,YUAN Jin-Hui,XIA Chang-Ming,WANG Wei,WANG Chao,HOU Zhi-Yun,. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes[J]. Chin. Phys. Lett., 2012, 29(5): 727-729
[6] M. A. Ismail,S. J. Tan,N. S. Shahabuddin,S. W. Harun,**,H. Arof,H. Ahmad. Performance Comparison of Mode-Locked Erbium-Doped Fiber Laser with Nonlinear Polarization Rotation and Saturable Absorber Approaches[J]. Chin. Phys. Lett., 2012, 29(5): 727-729
[7] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 727-729
[8] WU Wen-Han,HUANG Xi,YU Yu**,ZHANG Xin-Liang. RZ-DQPSK Signal Amplitude Regeneration Using a Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(4): 727-729
[9] KONG Duan-Hua, ZHU Hong-Liang, LIANG Song, QIU Ji-Fang, ZHAO Ling-Juan. Ultrashort Pulse Generation at Quasi-40-GHz by Using a Two-Section Passively Mode-Locked InGaAsP-InP Tensile Strained Quantum-Well Laser[J]. Chin. Phys. Lett., 2012, 29(2): 727-729
[10] TONG Jun-Yi, TAN Wen-Jiang, SI Jin-Hai, CHEN Feng, YI Wen-Hui, HOU Xun. High Time-Resolved Imaging of Targets in Turbid Media Using Ultrafast Optical Kerr Gate[J]. Chin. Phys. Lett., 2012, 29(2): 727-729
[11] HAN Ying, **, HOU Lan-Tian, YUAN Jin-Hui, XIA Chang-Ming, ZHOU Gui-Yao,. Ultraviolet Continuum Generation in the Fundamental Mode of Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2012, 29(1): 727-729
[12] DONG Jian-Ji**, LUO Bo-Wen, ZHANG Yin, LEI Lei, HUANG De-Xiu, ZHANG Xin-Liang. All-Optical Temporal Differentiator Using a High Resolution Optical Arbitrary Waveform Shaper[J]. Chin. Phys. Lett., 2012, 29(1): 727-729
[13] TENG Hao, MA Jing-Long, WANG Zhao-Hua, ZHENG Yi, GE Xu-Lei, ZHANG Wei, WEI Zhi-Yi**, LI Yu-Tong, ZHANG Jie,. A 100-TW Ti:Sapphire Laser System at a Repetition Rate of 0.1 Hz[J]. Chin. Phys. Lett., 2012, 29(1): 727-729
[14] LI Zhong-Yu**, XU Song, CHEN Zi-Hui, ZHANG Fu-Shi, KASATANI Kazuo . Third-Order Optical Nonlinearities of Squarylium Dyes with Benzothiazole Donor Groups Measured Using the Picosecond Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(8): 727-729
[15] WANG Jing, ZHANG Xiao-Min, HAN Wei, LI Fu-Quan, ZHOU Li-Dan**, FENG Bin, XIANG Yong . Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths[J]. Chin. Phys. Lett., 2011, 28(8): 727-729
Viewed
Full text


Abstract