Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 702-705    DOI:
Original Articles |
A Time Domain Algorithm on the Reconstruction of Rough Surfaces
REN Yu-Chao;GUO Li-Xin;WU Zhen-Sen
School of Science, Xidian University, Xi'an 710071
Cite this article:   
REN Yu-Chao, GUO Li-Xin, WU Zhen-Sen 2007 Chin. Phys. Lett. 24 702-705
Download: PDF(237KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider the inverse scattering problem of a perfectly conducting one-dimensional rough surface in the case that the incident field is unnecessary to be time harmonic. Based on our previous investigation of the frequency domain algorithm, a new time domain algorithm is proposed, in which we approximate the incident pulse by a finite sum of time harmonic fields and then apply the frequency domain algorithm for time harmonic waves. Numerical experiments indicate that the time domain algorithm shows great accuracy of reconstruction of the surface profile and yields significant improvement than the frequency domain algorithm.
Keywords: 41.20.Jb      42.25.Fx      42.25.Dd     
Received: 26 August 2006      Published: 08 February 2007
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Fx (Diffraction and scattering)  
  42.25.Dd (Wave propagation in random media)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Yu-Chao
GUO Li-Xin
WU Zhen-Sen
[1] Wombel R J and DeSanto J A 1991 J. Opt. Soc. Am. A 81892
[2] Wombel R J and DeSanto J A 1991 Inverse Problems 7 L7
[3] Sheppard C 1998 Waves in Random Media 8 53
[4] Ying C and Noguchi A 1994 IEICE Trans. Electron. E77-C1781
[5] Maystre R D 1980 J. Opt. Soc. Am. 7 1483
[6] Spivack M 1992 J. Opt. Soc. Am. A 9 1352
[7] Spivack M 1992 J. Phys. A 25 3295
[8] Arens T and Kirsch A 2003 Inverse Problems 19 1195
[9] Ren Y C, Guo L X and Wu Z S 2006 Chin. Phys. Lett. 232426
[10] Potthast R 1998 IMA J. Appl. Math. 61 119
[11] Potthast R 2001 Point Sources and Multipoles in InverseScattering Theory (Boca Raton, FL: CRC)
[12] Ikehata M 2000 Inverse Problems 16 785
[13] Lan K W, Li Q, Tsang L, Lai K L and Chan C H2004 IEEE Trans.Antennas Propag. 52 3200
[14] Dogaru T and Carin L 2000 Radio Science 35 1279
[15] Guerin C A 2002 Waves Random Media 12 293
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 702-705
[2] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 702-705
[3] YAN Qin,LU Jian,NI Xiao-Wu**. Measurement of the Velocities of Nanoparticles in Flowing Nanofluids using the Zero-Crossing Laser Speckle Method[J]. Chin. Phys. Lett., 2012, 29(4): 702-705
[4] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 702-705
[5] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 702-705
[6] PAN Wei-Tao, LIU Song-Hua, QIU Zhi-Liang. Characteristics of Plane Wave Propagation in Biaxially Anisotropic Gyrotropic Media[J]. Chin. Phys. Lett., 2012, 29(3): 702-705
[7] LI Cheng-Guo, GAO Yong-Hao, XU Xing-Sheng. Angular Tolerance Enhancement in Guided-Mode Resonance Filters with a Photonic Crystal Slab[J]. Chin. Phys. Lett., 2012, 29(3): 702-705
[8] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 702-705
[9] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 702-705
[10] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 702-705
[11] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 702-705
[12] SHI Fan, LI Wei, WANG Pi-Dong, LI Jun, WU Qiang, WANG Zhen-Hua, ZHANG Xin-Zheng**. Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals[J]. Chin. Phys. Lett., 2012, 29(1): 702-705
[13] GUO Yu-Bing, CHEN Yong-Hai**, XIANG Ying, QU Sheng-Chun, WANG Zhan-Guo . Photorefractive Effect of a Liquid Crystal Cell with a ZnO Nanorod Doped in Only One PVA Layer[J]. Chin. Phys. Lett., 2011, 28(9): 702-705
[14] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 702-705
[15] ZHAO Yan-Zhong**, SUN Hua-Yan, ZHENG Yong-Hui . An Approximate Analytical Propagation Formula for Gaussian Beams through a Cat-Eye Optical Lens under Large Incidence Angle Condition[J]. Chin. Phys. Lett., 2011, 28(7): 702-705
Viewed
Full text


Abstract