Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 640-643    DOI:
Original Articles |
Chaotic Dynamics of a Periodically Modulated Josephson Junction
WU Qin1;LI Fei2
1School of Basic Medical Science, Guangdong Medical College, Dongguan 5238082Department of Physics, Nanjing University, Nanjing 210008
Cite this article:   
WU Qin, LI Fei 2007 Chin. Phys. Lett. 24 640-643
Download: PDF(287KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the chaotic dynamics of a periodically modulated Josephson junction with damping. The general solution of the first-order perturbed equation is constructed by using the direct perturbation technique. It is theoretically found that the boundedness conditions of the general solution contain the
Melnikov chaotic criterion. When the perturbation conditions cannot be satisfied, numerical simulations demonstrate that the system can step into chaos through a period doubling route with the increase of the amplitude of the modulating term. Regulating specific parameters can effectively suppress the chaos.
Keywords: 05.45.-a      05.45.Pq     
Received: 24 October 2006      Published: 08 February 2007
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0640
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Qin
LI Fei
[1] Belykh V N, Pedersen N F and Soerensen O H 1977 Phys.Rev. B 16 4853 Belykh V N, Pedersen N F and Soerensen O H 1977 Phys. Rev.B 16 4860
[2] Huberman B A, Crutchfield J A and Packard N H 1980 Appl. Phys. Lett. 37 750
[3] Gubankov V N, Konstantinyan K I, Koshelets V P andOvsyannikov G A 1983 IEEE. Trans. Magn. MAG 19 637
[4] Genchev Z G, Ivanov Z G and Todorov B N 1983 IEEE Trans.Circuits Syst. CAS 30 633
[5] Cirillo M and Pedersen 1982 Phys. Lett. A 90 150
[6] Octavio M 1984 Phys. Rev. B 29 1231
[7] Cicogna G and Fronzoni L 1990 Phys. Rev. A 42 1901
[8] Yao X, Wu J Z and Ting C S 1990 Phys. Rev. B 42 244
[9] Hai W, Xiao Y, Fang J, Huang W and Zhang X 2000 Phys.Lett. A 265 128
[10] Hai W, Zhang X, Huang W and Chong G 2001 Int. J.Bifurcation and Chaos 11 2263
[11] Hai W, Xiao Y, Chong G and Xie Q 2002 Phys. Lett. A 295 220
[12] Yu K, Zou J and Shao B 2001 Chin. Phys. 10 1154
[13] Xuan Y, Li Z, Tao H, Ren Z, Che G, Zhao B and Zhao Z 2001 Chin. Phys. Lett. 18 1254
[14] Zhan Y 2005 Chin. Phys. 14 1044
[15] Zhou T, Yan S, Fang L, Zuo X, Li S, Ji L and Zhao X 2006 Chin. Phys. Lett. 23 1935
[16] Zeng T, Shao B, Chang P and Zou J 2006 Chin. Phys.Lett. 23 2644
[17] Hai W, Lee C, Chong G and Shi L 2002 Phys. Rev. E 66 026202
[18] Fang J, Hai W and Zhang X 2001 Chin. Phys. Lett. 18 334
[19] Fang J 2003 Commun. Theor. Phys. 39 555
[20] Fang J, Hai W, Chong G and Xie Q 2005 Physica A 349 133
[21] Li F, Shu W, Jiang J, Luo H and Ren Z 2007 Eur. Phys.J. D ( DOI: 10.1140/epjd/e2006-00247-3)
[22] Li F, Shu W, Luo H and Ren Z Chin. Phys. (accepted)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 640-643
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 640-643
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 640-643
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 640-643
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 640-643
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 640-643
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 640-643
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 640-643
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 640-643
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 640-643
[11] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 640-643
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 640-643
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 640-643
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 640-643
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 640-643
Viewed
Full text


Abstract