Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 636-639    DOI:
Original Articles |
Rhythm Synchronization of Coupled Neurons with Temporal Coding Scheme
SHI Xia1;LU Qi-Shao2
1School of Science, Beijing University of Posts and Telecommunications, Beijing 1008762School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083
Cite this article:   
SHI Xia, LU Qi-Shao 2007 Chin. Phys. Lett. 24 636-639
Download: PDF(265KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Encoding information by firing patterns is one of the basic neural functions, and synchronization is important collective behaviour of a group of coupled neurons. Taking account of two schemes for encoding information (that is, rate coding and temporal coding), rhythm synchronization of coupled neurons is studied. There are two types of rhythm synchronization of neurons: spike and burst synchronizations. Firstly, it is shown that the spike synchronization is equivalent to the phase synchronization for coupled neurons. Secondly, the similarity function of the slow variables of neurons, which have relevant to the
bursting process, is proposed to judge the burst synchronization. It is also found that the burst synchronization can be achieved more easily than the spike synchronization, whatever the firing patterns of the neurons are. Hence the temporal encoding scheme, which is closely related to both the spike and burst synchronizations, is more comprehensive than the rate coding scheme in essence.
Keywords: 05.45.-a      05.45.Xt      87.17.Nn     
Received: 14 September 2006      Published: 08 February 2007
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.17.Nn  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0636
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHI Xia
LU Qi-Shao
[1]Ferster D and Spruston N 1995 Science 270 756
[2]Stevens C and Zador A 1995 Curr. Biol 12 1370
[3]Rullen R V and Thorpe S J 2001 Neural Computation 13 1255
[4]Gray C M 1994 J. Comp. Neurosci. 11 11
[5]Mirollo R E and Strogatz S H 1990 SIAM J. Appl. Math.50 1645
[6]Dragoi V and Grosu I 1998 Neural Proc. Lett. 7 199
[7]Izhikevich E M 2001 SIAM Rev. 43 315
[8]Wang J, Deng B and Tsang K M 2004 Chaos, Solitons \& Fractals 22 469
[9]Shi X and Lu Q S 2005 Chin. Phys. 14 77
[10]Shi X and Lu Q S 2005 Chin. Phys. Lett. 22 547
[11]Shuai J W and Durand D M 1999 Phys. Lett. A 264 289
[12]Wang H X, Lu Q S and Wang Q Y 2005 Chin. Phys. Lett. 222173
[13]Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22 543
[14]Han S K, Kurrer C and Kuramoto Y 1995 Phys. Rev. Lett.75 3190
[15]Wu Y, Xu J X, He D H and Earn D 2005 Chaos, Solitons \&{it Fractals 23 1605
[16]Bair W 1999 Curr. Opin. Neurobiol. 9 447
[17]Singer W 1999 Curr. Opin. Neurobiol. 9 189
[18]Hindmarsh J L and Rose R M 1982 Nature 296 162
[19]Hindmarsh J L and Rose R M 1984 Proc. R. Soc. Lond. B221 87
[20]Gautrais J and Thorpe S J 1998 Biosystems 48 57
[21]Yang Z Q and Lu Q S 2004 Chin. Phys. Lett. 21 2124
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 636-639
[2] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 636-639
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 636-639
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 636-639
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 636-639
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 636-639
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 636-639
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 636-639
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 636-639
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 636-639
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 636-639
[12] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 636-639
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 636-639
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 636-639
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 636-639
Viewed
Full text


Abstract