Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 620-623    DOI:
Original Articles |
Josephson Dynamics of a Bose--Einstein Condensate Trapped in a Double-Well Potential
YANG Hong-Wei1;ZUO Wei 1,2
1Institute of Modern Physics, Chinese Academy of Sciences, PO Box 31, Lanzhou 7300002Graduate School, Chinese Academy of Sciences, Beijing 100049
Cite this article:   
YANG Hong-Wei, ZUO Wei 2007 Chin. Phys. Lett. 24 620-623
Download: PDF(315KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Josephson equations for a Bose--Einstein Condensate gas trapped in a
double-well potential are derived with the two-mode approximation by the
Gross--Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN>4EJ is presented.
Keywords: 03.75.Lm      03.65.Ge     
Received: 14 November 2006      Published: 08 February 2007
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0620
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Hong-Wei
ZUO Wei
[1] Andrews M R et al 1997 Science 275 637
[2] Ruostekoski J et al 1998 Phys. Rev. A 58 R50
[3] Thomas N R et al 2002 Phys. Rev. A 65 063406
[4] Liu j et al 2002 Phys. Rev. A 66 023404
[5] Mustecaplioglu O E et al 2005 Phys. Rev. A 71 053616
[6] Weiss C et al 2005 Phys. Rev. A 72 053626
[7] Anker T et al 2005 Phys. Rev. Lett. 94 020403
[8] Ji X M et al 2004 Chin. Phys. Lett. 21 2399
[9] Josephson B D 1962 Phys. Lett. A 1 251
[10] Shin Y et al 2004 Phys. Rev. Lett. 92 050405
[11] Gati R et al 2006 Appl. Phys. B 82 207
[12] Albiez M et al 2005 Phys. Rev. Lett. 95 010402
[13] G\"{orliz A et al 2001 Phys. Rev. Lett. 87 130402
[14] Pitaevskii L P 1961 Sov. Phys. JETP 13 451 Gross E P 1961 Nuovo Cimento 20 454 Gross E P 1963 J. Math. Phys. (N.Y.) 4 195
[15] Miburn G J et al 1997 Phys. Rev. A 55 4318
[16] Smerzi A et al 1997 Phys. Rev. Lett. 79 4950
[17] Fu L and Liu J 2006 Phys. Rev. A 74 063614
Related articles from Frontiers Journals
[1] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 620-623
[2] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 620-623
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 620-623
[4] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 620-623
[5] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 620-623
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 620-623
[7] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 620-623
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 620-623
[9] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 620-623
[10] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 620-623
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 620-623
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 620-623
[13] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 620-623
[14] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 620-623
[15] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 620-623
Viewed
Full text


Abstract