Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 616-619    DOI:
Original Articles |
Landau Damping of Collective Modes in a Disc-Shaped Bose--Einstein Condensate
MA Xiao-Dong 1,2;MA Yong-Li3;HUANG Guo-Xiang1
1Department of Physics, East China Normal University, Shanghai 2000622Department of Physics, Xinjiang Normal University, Urumchi 8300543Department of Physics, Fudan University, Shanghai 200433
Cite this article:   
MA Xiao-Dong, MA Yong-Li, HUANG Guo-Xiang 2007 Chin. Phys. Lett. 24 616-619
Download: PDF(269KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the Landau damping of collective modes in an anisotropic Bose--Einstein condensate (BEC). Based on divergence-free analytical solutions for the ground state wavefunction of the condensate and all eigenvalues and eigenfunctions for thermal excited quasiparticles, we make a detailed analytical calculation on coupling matrix elements. We evaluate the Landau damping of a quadrupole collective mode in the BEC with a disc-shaped trap and discuss its dependence on temperature and particle number of the system.
Keywords: 03.75.Kk      05.30.Jp      67.40.Db     
Received: 19 September 2006      Published: 08 February 2007
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
  67.40.Db  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0616
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Xiao-Dong
MA Yong-Li
HUANG Guo-Xiang
[1]Jin D S et al 1996 Phys. Rev. Lett. 77 420
[2]Jin D S et al 1997 Phys. Rev. Lett. 78 764
[3]Stamper-Kurn D M 1998 Phys. Rev. Lett. 81 500
[4]Chevy F et al 2002 Phys. Rev. Lett. 88 250402
[5]Mewes M O et al 1996 Phys. Rev. Lett. 77 988
[6] Onofrio R et al 2000 Phys. Rev. Lett. 84 810
[7]Marag\`o O et al 2001 Phys. Rev. Lett. 86 3938
[8]Pitaevskii L P and Stringari S 1997 Phys. Lett. A 235 10
[9]Giorgini S 1998 Phys. Rev. A 57 2949
[10] Jackson B and E Zaremba 2002 Phys. Rev. Lett. 89150402
[11] Guileumas M and Pitaevskii L P 2000 Phys. Rev. A 61 013602
[12] Guileumas M and Pitaevskii L P 2003 Phys. Rev. A 67 053607
[13] Tsuchiya S and Griffin A 2005 Phys. Rev. A 72 053621
[14] Liu S J et al 2005 Chin. Phys. Lett. 22 533
[15] Hechenblaikner G et al 2002 Phys. Rev. A 65 033612
[16] Ma X D et al 2006 Chin. Phys. 15 1871
[17] Hu B et al 2004 Phys. Rev. A 69 063608
[18] Ma Y L et al 2005 Phys. Rev. A 71 062504
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 616-619
[2] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 616-619
[3] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 616-619
[4] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 616-619
[5] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 616-619
[6] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 616-619
[7] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 616-619
[8] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 616-619
[9] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 616-619
[10] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 616-619
[11] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 616-619
[12] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 616-619
[13] LIU Xun-Xu, ZHANG Xiao-Fei, ZHANG Peng. Vector Solitons and Soliton Collisions in Two-Component Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2010, 27(7): 616-619
[14] LUO Xiao-Bing, XIA Xiu-Wen, ZHANG Xiao-Fei,. Suppression of Chaos in a Bose-Einstein Condensate Loaded into a Moving Optical Superlattice Potential[J]. Chin. Phys. Lett., 2010, 27(4): 616-619
[15] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 616-619
Viewed
Full text


Abstract