Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 599-601    DOI:
Original Articles |
Implementation of a Two-Atom (swap)1/2 Gate in Cavity QED
LIU Qi;YE Liu
School of Physics and Material Science, Anhui University, Hefei 230039
Cite this article:   
LIU Qi, YE Liu 2007 Chin. Phys. Lett. 24 599-601
Download: PDF(198KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We implement a two-atom (swap)1/2 gate via cavity QED. During the preparation, a cavity-assisted collision between atoms is required, and this does not need any auxiliary atom. The cavity is only virtually excited, thus our scheme is insensitive to the cavity field states and to the cavity decay. The scheme can be implemented by the present cavity QED techniques.
Keywords: 03.67.-a      03.67.Mn      42.50.Hz     
Received: 21 December 2006      Published: 08 February 2007
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0599
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Qi
YE Liu
[1] Barenco A et al 1995 Phys. Rev. A 52 3457
[2] Nielsen M A et al Quantum Computation and QuantumInformation (Cambridge: Cambridge University Press) pp 171--221
[3] Khaneja N et al 2001 Phys. Rev. A 63 032308
[4] Vidal G et al 2002 Phys. Rev. Lett. 88 237902
[5] Bremner M J et al 2002 Phys. Rev. Lett. 89 247902
[6] Zhang J et al e-print quant-ph/0212109
[7] Fredkin E et al 1982 Int. J. Theor. Phys 21 219
[8] Zheng Y Z et al 2004 Chin. Phys. Lett. 21 9
[9] Lacour X et al 2006 Phys. Rev. A 73 042321
[10] Gruska J Quantum Computing (Cambridge: CambridgeUniversity Press) pp 111--130
[11] Knill E et al 2001 Nature 409 46
[12] Pittman T B et al 2001 Phys. Rev. A 64 062311
[13] Knill E 2002 Phys. Rev. A 66 052306
[14] Knill E 2003 Phys. Rev. A 68 064303
[15] Brion E et al 2006 Eur. Phys. J. D 38 381
[16] Eckert K et al 2002 Phys. Rev. A 66 042317
[17] Cai Q Y 2004 Chin. Phys. Lett. 21 1189
[18] Franson J D et al 2004 Phys. Rev. A 70 062302
[19] Barenco A et al 1995 Phys. Rev. Lett. 74 4083
[20] Sleator T et al 1995 Phys. Rev. Lett. 74 4087
[21] Domokos P et al 1995 Phys. Rev. A 52 3554
[22] Pellizzari T et al 1995 Phys. Rev. Lett. 75 3788
[23] Davidovich L et al 1994 Phys. Rev. A 50 R895
[24] Cirac J I et al 1994 Phys. Rev. A 50 R4441
[25] Moussa M H Y 1996 Phys. Rev. A 54 4661
[26] Zheng S B 1999 Opt. Commun. 167 111
[27] Zheng S B et al 2000 Phys. Rev. Lett 85 2392
[28] Osnaghi S et al 2001 Phys. Rev. Lett 87 037902
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 599-601
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 599-601
[3] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 599-601
[4] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 599-601
[5] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 599-601
[6] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 599-601
[7] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 599-601
[8] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 599-601
[9] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 599-601
[10] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 599-601
[11] LI Zhong-Hua, LI Yuan, DOU Ya-Fang, GAO Jiang-Rui, ZHANG Jun-Xiang**. Comparison of the Noise Properties of Squeezed Probe Light in Optically Thick and Thin Quantum Coherence Media for Weak and Strong Coupling Lights[J]. Chin. Phys. Lett., 2012, 29(1): 599-601
[12] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 599-601
[13] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 599-601
[14] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 599-601
[15] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 599-601
Viewed
Full text


Abstract