Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 592-595    DOI:
Original Articles |
Modified Form of Wigner Functions for Non-Hamiltonian Systems
HENG Tai-Hua1;LI Ping2;JING Si-Cong1
1Department of Modern Physics, University of Science and Technology of China, Hefei 230026 2School of Science, Hefei University of Technology, Hefei 230039
Cite this article:   
HENG Tai-Hua, LI Ping, JING Si-Cong 2007 Chin. Phys. Lett. 24 592-595
Download: PDF(215KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantization of non-Hamiltonian systems (such as damped systems) often gives rise to complex spectra and corresponding resonant states, therefore a standard form calculating Wigner functions cannot lead to static quasi-probability distribution functions. We show that a modified form of the Wigner functions satisfies a *-genvalue equation and can be derived from deformation quantization for such systems.
Keywords: 03.65.-w      03.65.Yz      05.30.-d     
Received: 01 December 2006      Published: 08 February 2007
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.30.-d (Quantum statistical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0592
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HENG Tai-Hua
LI Ping
JING Si-Cong
[1] Wigner E 1932 Phys. Rev. 40 749
[2] Zachos C Deformation Quantization: Quantum MechanicsLives and Works in Phase Space hep-th/0110114 v3Fairlie D and Manogue C 1991 J. Phys. A: Math. Gen. 24 3807
[3] Curtright T, Fairlie D and Zachos C 1998 Phys. Rev. D 58 025002
[4] Kossakowski A 2001 Open Sys. Information Dyn. 9 1 Chruscinski D Resonant States and Classical Dampingmath-ph/0206009
[5] Chruscinski D Wigner Function for DampedSystems math-ph/0209008
[6] Pontriagin L S et al 1962 The Mathematical Theory ofOptimal Processes (New York: Wiley)
[7] Baker G 1958 Phys. Rev. 109 2198
[8] Hirshfeld A and Henselder P 2002 Am. J. Phys. 70 537
Related articles from Frontiers Journals
[1] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 592-595
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 592-595
[3] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 592-595
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 592-595
[5] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 592-595
[6] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 592-595
[7] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 592-595
[8] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 592-595
[9] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 592-595
[10] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 592-595
[11] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 592-595
[12] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 592-595
[13] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 592-595
[14] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 592-595
[15] PENG Liang, HUANG Yun-Feng**, LI Li, LIU Bi-Heng, LI Chuan-Feng**, GUO Guang-Can . Experimental Demonstration of Largeness in Bipartite Entanglement Sudden Death[J]. Chin. Phys. Lett., 2011, 28(7): 592-595
Viewed
Full text


Abstract