Chin. Phys. Lett.  2007, Vol. 24 Issue (3): 589-591    DOI:
Original Articles |
An Integrable Decomposition of the Derivative Nonlinear Schrodinger Equation
ZHOU Ru-Guang
School of Mathematical Science, Xuzhou Normal University, Xuzhou 221116
Cite this article:   
ZHOU Ru-Guang 2007 Chin. Phys. Lett. 24 589-591
Download: PDF(190KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The nonlinearization method of spectral problem is developed and applied to the derivative nonlinear Schrodinger equation (DNLS). As a result, an integrable decomposition of the DNLS equation is obtained.
Keywords: 02.30.Jr      03.40.t     
Received: 05 December 2006      Published: 08 February 2007
PACS:  02.30.Jr (Partial differential equations)  
  03.40.t  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I3/0589
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Ru-Guang
[1] Rogister A 1971 Phys. Fluids 14 2733
[2] Mj\o lhus E 1976 J. Plasma Phys. 16 321
[3]Mj\o lhus E 1989 Physica Scripta 40 227
[4] Ruderman M S 2002 J. Plasma Phys. 67 271
[5]Agrawal G P 2001 Nonlinear Fiber Optics 3rd edn (NewYork: Academic)
[6] Tzoar N and Jian M 1981 Phys. Rev. A 23 1266
[7] Nakat I 1991 J. Phys. Soc. Jpn. 60 3976
[8] Nakata I and Ono H and Yoida M 1993 Prog. Theor. Phys. 90 739
[9]Daniel M and Veerakumar V 2002 Phys. Lett. A 30277
[10] Kaup D J and Newell A C 1978 Prog. Theor. Phys. 19 798
[11]Cao C W and Geng X G 1990 Nonlinear Physics,Research Reports in Physics ed Gu C H, Li Y S and Tu G Z(Berlin: Springer) p 66
[12] Qiao Z J 1993 J. Math. Phys. 34 3110
[13] Zeng Y B 1994 J. Phys. D 73 171
[14] Zeng Y B and Hietarinta J 1996 J. Phys. A 29 5241
[15]Zeng Y B and Ma W X 1999 J. Math. Phys. 40 6526
[16]Ji J and Zhou R G 2006 Chaos, Solitons \& Fractals 30 993
[17] Geng X G and Cao C W 1999 Phys. Lett. A 261 289
[18] Babelon O and Villet C M 1990 Phys. Lett. B 237 411
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 589-591
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 589-591
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 589-591
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 589-591
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 589-591
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 589-591
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 589-591
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 589-591
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 589-591
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 589-591
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 589-591
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 589-591
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 589-591
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 589-591
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 589-591
Viewed
Full text


Abstract