Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 585-588    DOI:
Original Articles |
Bianchi Type-III String Cosmological Models with Time Dependent Bulk Viscosity
BALI Raj1;PRADHAN Anirudh2
1Department of Mathematics, University of Rajasthan, Jaipur-302 004, India 2Department of Mathematics, Hindu Post-Graduate College, Zamania-232 331, Ghazipur, India
Cite this article:   
BALI Raj, PRADHAN Anirudh 2007 Chin. Phys. Lett. 24 585-588
Download: PDF(210KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bianchi type-III string cosmological models with bulk viscous fluid for massive string are investigated. To obtain the determinate model of the universe, we assume that the coefficient of bulk viscosity ξ is inversely proportional to the expansion θ in the model and expansion θ in the model is proportional to the shear σ. This leads to B = l Cn, where l and n are constants. Behaviour of the model in the presence and absence of bulk viscosity is discussed. The physical implications of the models are also discussed in detail.
Keywords: 98.80.Cq      04.20.-q     
Received: 03 November 2006      Published: 24 February 2007
PACS:  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
  04.20.-q (Classical general relativity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0585
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BALI Raj
PRADHAN Anirudh
[1] Kibble T W B 1976 J. Phys. A: Math. Gen. 9 1387
[2] Zel'dovich Ya B, Kobzarev I Yu and Okun L B 1975 Zh.Eksp. Teor. Fiz. 67 3 Zel'dovich Ya B, Kobzarev I Yu and Okun L B 1975 Sov.Phys.-JETP 40 1
[3] Kibble T W B 1980 Phys. Rep. 67 183
[4] Everett A E 1981 Phys. Rev. 24 858
[5] Vilenkin A 1981 Phys. Rev. D 24 2082
[6] Zel'dovich Ya B 1980 Mon. Not. R. Astron. Soc. 192 663
[7] Letelier P S 1979 Phys. Rev. D 20 1249
[8] Letelier P S 1983 Phys. Rev. D 28 2414
[9] Stachel J 1980 Phys. Rev. D 21 2171
[10] Krori K D, Chaudhury T, Mahanta C R and Mazumdar A 1990 Gen. Rel. Grav. 22 123
[11] Wang X X 2003 Chin. Phys. Lett. 20 615
[12] Bali R and Dave S 2001 Pramana---J. Phys. 56 513
[13] Bali R and Upadhaya R D 2003 Astrophys. Space Sci. 283 97
[14] Bali R and Dave S 2003 Astrophys. Space Sci. 288 503
[15] Bali R and Singh D K 2005 Astrophys. Space Sci. 300 387
[16] Bali R and Anjali 2006 Astrophys. Space Sci. 302 201
[17] Yavuz I, Yilmaz I and Baysal H 2005 Int. J. Mod. Phys.D 14 1365
[18] Yilmaz I 2006 Gen. Relativ. Gravit. 38 1397
[19] Selijak U, Slosar A and McDonald P 2006 J. Cosm.Astroparticle Phys. 10 014
[20] Selijak U and Slosar A 2006 Preprint astro-ph/0604143
[21] Maharaj S D, Leach P G L and Govinder K S 1995 Pramana-J. Phys. 44 511
[22] Yadav M K, Pradhan A and Singh S K 2006 Astrophysics andSpace Science (submitted)
[23] Yadav M K, Rai A and Pradhan A 2006 Int. J. Theor.Phys. (accepted) (gr-qc/ 0611032)
[24] Wang X X 2004 Astrophys. Space Sci. 293 933
[25] Wang X X 2004 Chin. Phys. Lett. 21 1205
[26] Wang X X 2005 Chin. Phys. Lett. 22 29
[27] Wang X X 2006 Chin. Phys. Lett. 23 1702
[28] Landau L D and Lifshitz E M 1963 Fluid Mech. 6 505
[29] Thorne K S 1967 Astrophys. Space Sci. 148 51
[30] Kantowski R and Sachs R K 1966 J. Math. Phys. 7 433
[31] Kristian J and Sachs R K 1966 Astrophys. J. 143 379
[32] Bali R and Jain V C 1999 Astrophys. Space Sci. 262 145
[33] Pradhan A, Yadav L and Yadav A K 2003 Czech. J. Phys. 54 487
[34] Pradhan A and Singh S K 2004 Int. J. Mod. Phys. D 13 503
Related articles from Frontiers Journals
[1] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 585-588
[2] M. Sharif*,Z. Yousaf. Shearfree Spherically Symmetric Fluid Models[J]. Chin. Phys. Lett., 2012, 29(5): 585-588
[3] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 585-588
[4] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 585-588
[5] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 585-588
[6] Atul Tyagi*, Keerti Sharma . Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity[J]. Chin. Phys. Lett., 2011, 28(8): 585-588
[7] N. P. Gaikwad**, M. S. Borkar, S. S. Charjan . Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation[J]. Chin. Phys. Lett., 2011, 28(8): 585-588
[8] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 585-588
[9] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 585-588
[10] Abdussattar**, S. R. Prajapati** . Friedman–Robertson–Walker Models with Late-Time Acceleration[J]. Chin. Phys. Lett., 2011, 28(2): 585-588
[11] CHEN Ju-Hua, **, ZHOU Sheng, WANG Yong-Jiu, . Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2011, 28(2): 585-588
[12] WANG Hua-Wen, CHENG Hong-Bo* . Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. Chin. Phys. Lett., 2011, 28(12): 585-588
[13] Koijam Manihar Singh*, Kangujam Priyokumar Singh** . Cosmic String Universes Embedded with Viscosity[J]. Chin. Phys. Lett., 2011, 28(10): 585-588
[14] Atul Tyagi, Keerti Sharma. Bianchi Type-V Magnetized String Cosmological Model with Variable Magnetic Permeability for Viscous Fluid distribution[J]. Chin. Phys. Lett., 2010, 27(8): 585-588
[15] Atul Tyagi, Keerti Sharma, Payal Jain. Bianchi Type-IX String Cosmological Models for Perfect Fluid Distribution in General Relativity[J]. Chin. Phys. Lett., 2010, 27(7): 585-588
Viewed
Full text


Abstract