Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 567-569    DOI:
Original Articles |
Analytical Interaction of the Acoustic Wave and Turbulent Flame
TENG Hong-Hui;JIANG Zong-Lin
LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
TENG Hong-Hui, JIANG Zong-Lin 2007 Chin. Phys. Lett. 24 567-569
Download: PDF(188KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically. Under the mechanism of Darrieus--Landau instability, the amplitude of flame wrinkles, which is as functions of the expansion coefficient and the perturbation wave number, increases greatly independent of the `stationary' turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.
Keywords: 82.33.Vx      47.20.-k      47.27.-i     
Received: 01 September 2006      Published: 24 February 2007
PACS:  82.33.Vx (Reactions in flames, combustion, and explosions)  
  47.20.-k (Flow instabilities)  
  47.27.-i (Turbulent flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0567
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TENG Hong-Hui
JIANG Zong-Lin
[1] Landau L D and Lifshitz E M 1987 Fluid Mechanics(Oxford: Pergamon)
[2] Clanet C and Searby G 1988 Phys. Rev. Lett. 803867
[3] Bychkov V 1999 Phys. Fluids 11, 3168
[4] Bychkov V 2002 Phys. Rev. Lett. 89 168302
[5] Williams F A 2000 Prog. Energ. Combust. 26 657
[6] Searby G and Clavin P 1986 Combust. Sci. Technol. 46 167
[7] Denet B 1997 Phys. Rev. E 55 6911
[8] Searby G and Rochwerger D 1991 J. Fluid Mech. 239 529
[9] Akkerman V B and Bychkov V 2005 Combust. Expl. ShockWaves 41 363
[10] Fang L, Cui G X, Xu C X and Zhang Z S 2005 Chin. Phys.Lett. 22 11
[11] Balachandran R, Ayoola B O, Kaminski CF, Dowling A P and Mastorakos E 2005 Combust. Flame 14337
Related articles from Frontiers Journals
[1] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 567-569
[2] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 567-569
[3] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 567-569
[4] SHAO Ye-Tao, WANG Jian-Ping. Change in Continuous Detonation Wave Propagation Mode from Rotating Detonation to Standing Detonation[J]. Chin. Phys. Lett., 2010, 27(3): 567-569
[5] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 567-569
[6] MI Jian-Chun, R. A. Antonia. Key Factors in Determining the Magnitude of Vorticity in Turbulent Plane Wakes[J]. Chin. Phys. Lett., 2010, 27(2): 567-569
[7] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 567-569
[8] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 567-569
[9] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 567-569
[10] SUN Liang. Essence of Inviscid Shear Instability: a Point View of Vortex Dynamics[J]. Chin. Phys. Lett., 2008, 25(4): 567-569
[11] FENG Shi-De, DONG Ping, ZHONG Lin-Hao. A Conceptual Model of Somali Jet Based on the Biot--Savart Law[J]. Chin. Phys. Lett., 2008, 25(12): 567-569
[12] FU De-Xun, MA Yan-Wen, LI Xin-Liang. Direct Numerical Simulation of Three-Dimensional Richtmyer--Meshkov Instability[J]. Chin. Phys. Lett., 2008, 25(1): 567-569
[13] WANG Gang, ZHANG De-Liang, LIU Kai-Xin. An Improved CE/SE Scheme and Its Application to Detonation Propagation[J]. Chin. Phys. Lett., 2007, 24(12): 567-569
[14] HU Kai-Heng, CHEN Kai. Relative Scaling Exponents and Intermittency in Compressible Turbulent Channel Flows[J]. Chin. Phys. Lett., 2005, 22(12): 567-569
[15] FANG Le, CUI Gui-Xiang, XU Chun-Xiao, ZHANG Zhao-Shun. Multi-Scale Analysis of Energy Transfer in Scalar Turbulence[J]. Chin. Phys. Lett., 2005, 22(11): 567-569
Viewed
Full text


Abstract