Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 520-523    DOI:
Original Articles |
Alternating-Current Conductivity for a Two-Channel Interacting Quantum Wire
PENG De-Jun 1;CHENG Fang 1;ZHOU Guang-Hui 1,2
1Department of Physics, Hunan Normal University, Changsha 410081 2International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110015
Cite this article:   
PENG De-Jun, CHENG Fang, ZHOU Guang-Hui 2007 Chin. Phys. Lett. 24 520-523
Download: PDF(206KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate theoretically the ac conductivity of a clean two-channel spinless quantum wire in the presence of both short-ranged intra- and inter-channel electron--electron interactions. In the Luttinger-liquid regime, we formulize the action functional of the system with an external time-varying
electric field. The obtained expression of ac conductivity for the system within linear response theory is generally an oscillation function of the interaction strength, the driving frequency as well as the measured position in the wire. The numerical examples demonstrate that the amplitude of ac conductivity is renormalized by the both interactions, and the dc conductivity of the system with inter-channel interaction is smaller than that without inter-channel interaction.
Keywords: 71.10.Pm      73.23.-b      73.21.Hb     
Received: 21 September 2006      Published: 24 February 2007
PACS:  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.21.Hb (Quantum wires)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0520
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG De-Jun
CHENG Fang
ZHOU Guang-Hui
[1] Platero G and Aguado R 2004 Phys. Rep. 395 1
[2]Kouwenhoven L P, Jauhar S, Orenstein J and McEuen P 1994 Phys. Rev. Lett. 73 3443 Vaart N C, Steveninck M P, Kouwenhoven L P, Johnson A T, Nazarov Y Vand Harmans C J P M 1994 Phys. Rev. Lett. 73 320
[3]Cheng F and Zhou G H 2005 Chin. Phys. Lett. 22 2039 Liao W H and Zhou G H 2005 Chin. Phys. Lett. 22 2922
[4]Brands T, Weinmann D and Kramer B 1993 Europhys.Lett. 22 51
[5]Voit J, Wang Y P and Grioni M 2000 Phys. Rev. B 61 7930
[6]Kane C L and Fisher M P A 1992 Phys. Rev. B 46 15233
[7]Cheng K and Liu Y L 2005 Chin. Phys. Lett. 22 2349 Liu Q Y, Tian G S and Yan X Z 2004 Chin. Phys. Lett. 21 937
[8]Maslov D L and Stone M 1995 Phys. Rev. B 52R5539 Ponomarenko V V 1995 Phys. Rev. B 52 R8666 Safi I and Schulz H J 1995 Phys. Rev. B 52 R17040
[9]Egger R and Grabert H 1996 Phys. Rev. Lett. 77 538
[10]Li Y Q and Ma Z S 1995 Phys. Rev. B 52R13071
[11]Cheng F and Zhou G H 2006 Phys. Rev. B 73125335
[12]Sandler N P and Maslov D L 1996 Phys. Rev. B 55 13808
[13]Kamide K, Tsukada Y and Kurihara S 2006 Phys.Rev. B 73 235326
[14]Sassetti M and Kramerb B 1996 Phys. Rev. B 54 R5203
[15]Fechner A, Sassetti M and Kramer B 2001 Phys.Rev. B 64 195315
[16]Maslov D 1995 Phys. Rev. B 52 R14368
[17]Blanter Y M, Hekking F W J and B\"{uttiker M 1998 Phys. Rev. Lett. 81 1925
Related articles from Frontiers Journals
[1] ZHAO Peng**,LIU De-Sheng,. Electronic Transport Properties of an Anthraquinone-Based Molecular Switch with Carbon Nanotube Electrodes[J]. Chin. Phys. Lett., 2012, 29(4): 520-523
[2] XIA Cai-Juan**, LIU De-Sheng, ZHANG Ying-Tang . Electronic Transport Properties of a Naphthopyran-Based Optical Molecular Switch: an ab initio Study[J]. Chin. Phys. Lett., 2011, 28(9): 520-523
[3] ZHAO Peng**, LIU De-Sheng, ZHANG Ying, WANG Pei-Ji, ZHANG Zhong . Rectifying Properties of a Nitrogen/Boron-Doped Capped-Carbon-Nanotube-Based Molecular Junction[J]. Chin. Phys. Lett., 2011, 28(4): 520-523
[4] ZHENG Ji-Ming, HUANG Yao-Qing**, REN Zhao-Yu, YANG Hui-Jing, CAO Mao-Sheng** . Electronic Non-Resonant Tunneling through Diaminoacenes: A First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(2): 520-523
[5] ZHOU Li-Ling . Unique Properties of Heat Generation in Nanoscale Systems[J]. Chin. Phys. Lett., 2011, 28(12): 520-523
[6] CAO Wen-Qiang, , LU Ming-Ming, WEN Bo, CHEN Yuan-Lu, LI Hong-Bo, YUAN Jie**, CAO Mao-Sheng** . MWCNTs/SiO2 Composite System: Carrier Transmission, Twin-Percolation and Dielectric Properties[J]. Chin. Phys. Lett., 2011, 28(10): 520-523
[7] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 520-523
[8] ZHANG Qing-Yun, WANG Bai-Geng, SHEN Rui, XING Ding-Yu. Generation and Quantum Interference of Entangled Electron-Hole Pairs in a Hanbury Brown and Twiss Interferometer[J]. Chin. Phys. Lett., 2010, 27(9): 520-523
[9] CHEN Zhi-Dong, ZHANG Jin-Yu, YU Zhi-Ping. Numerical Analysis of Alternating-Current Small-Signal Response in Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(8): 520-523
[10] HUANG Wei, WANG Zhao-Long, YAN Mu-Lin. Noncommutative Chern-Simons Description of the Fractional Quantum Hall Edge[J]. Chin. Phys. Lett., 2010, 27(6): 520-523
[11] WANG Jing, LIANG Yun-Ye, CHEN Hao, WANG Peng, R. Note, H. Mizuseki, Y. Kawazoe. Self-Consistent Study of Conjugated Aromatic Molecular Transistors[J]. Chin. Phys. Lett., 2010, 27(6): 520-523
[12] LIN Liang-Zhong, ZHU Rui, DENG Wen-Ji. Shot Noise in Aharonov-Casher Rings[J]. Chin. Phys. Lett., 2010, 27(6): 520-523
[13] PENG Ying-Cai, FAN Zhi-Dong, BAI Zhen-Hua, ZHAO Xin-Wei, LOU Jian-Zhong, CHENG Xu. Blue Luminescent Properties of Silicon Nanowires Grown by a Solid-Liquid-Solid Method[J]. Chin. Phys. Lett., 2010, 27(5): 520-523
[14] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 520-523
[15] KONG Xiao-Lan, XIONG Yong-Jian. Resonance Transport of Graphene Nanoribbon T-Shaped Junctions[J]. Chin. Phys. Lett., 2010, 27(4): 520-523
Viewed
Full text


Abstract