Original Articles |
|
|
|
|
A Comparison between AlN Films Grown by MOCVD Using Dimethylethylamine Alane and Trimethylaluminium as the Aluminium Precursors |
HU Wei-Guo1;LIU Xiang-Lin1;ZHANG Pan-Feng1;ZHAO Feng-Ai1;JIAO Chun-Mei1;WEI Hong-Yuan1;ZHANG Ri-Qing1;WU Jie-Jun1;CONG Guang-Wei1;PAN Yi2 |
1Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Department of Chemistry, Nanjing University, Nanjing 210093 |
|
Cite this article: |
HU Wei-Guo, LIU Xiang-Lin, ZHANG Pan-Feng et al 2007 Chin. Phys. Lett. 24 516-517 |
|
|
Abstract Aluminium nitride (AlN) films grown with dimethylethylamine alane (DMEAA) are compared with the ones grown with trimethylaluminium (TMA). In the high-resolution x-ray diffraction Ω scans, the full width at half maximum (FWHM) of (0002) AlN films grown with DMEAA is about 0.70 deg, while the FWHM of (0002) AlN films grown with TMA is only 0.11 deg. The surface morphologies of the films are different, and the rms roughnesses of the surface are approximately identical. The rms roughness of AlN films grown with DMEAA is 47.4nm, and grown with TMA is 69.4nm. Although using DMEAA as the aluminium precursor cannot improve the AlN crystal quality, AlN growth can be reached at low temperature of 673K. Thus, DMEAA is an alternative aluminium precursor to deposit AlN film at low growth temperatures.
|
Keywords:
68.55.-a
81.15.Kk
81.05.Ea
|
|
Received: 26 September 2006
Published: 24 February 2007
|
|
PACS: |
68.55.-a
|
(Thin film structure and morphology)
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
|
|
|
[1] Sun W, Adivarahan V, Shatalov M, Lee Y, Wu S, Yang J, Zhang J andKhan M A 2004 Jpn. J. Appl. Phys. 43 L1419 [2] Hanlon A, Pattison P M, Kaeding J F, Sharma R, Fini P and NakamuraS 2003 Jpn. J. Appl. Phys. 42 L628 [3] Yoshitaka T, Makoto K and Toshiki M 2006 Nature 44 325 [4] Hirayama H, Enomoto Y, Kinoshita A, Harita A and Aoyagi Y 2002 Appl. Phys. Lett. 80 37 [5] Bliss D F, Tassev V L, Weyburne D and Bailey J S 2003 J.Crystal Growth 250 1 [6] Zhang J P, Asif Khan M, Sun W H, Wang H M, Chen C Q, Fareed Q,Kuokstis E and Yang J W 2002 Appl. Phys. Lett. 81 4392 [7] Wang J F, Zhang B S, Zhang J C, Zhu J J, Wang Y T, Chen J, Liu W,Jiang D S, Yao D Z and Yang H 2006 Chin. Phys. Lett. 23 2591 [8] Ohba Y, Sato R and Kaneko K 2001 Jpn. J. Appl. Phys. 40L1293 [9] Li D S, Chen H, Yu H B, Zheng X H, Huang Q and Zhou J M 2004 Chin. Phys. Lett. 21 970 [10] Han X X, Wu J J, Li J M, Cong G W, Liu X L, Zhu Q S, Wang Z G 2005 Chin. Phys. Lett. 22 2096 [11] Nam K B, Li J, Lin J Y and Jiang H X 2004 Appl. Phys. Lett. 85 3489 [12] Bertolet D C, Liu Herng and Rogers J W Jr 1994 J. Appl.Phys. 75 10 [13] Kidder J N, Kuo J S, Ludviksson A, Pearsall T P, Roger J W Jr,John M G, Lynn R A and Sheng T H 1995 J. Vac. Sci. Technol. A 13711 [14] Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl.Phys. Lett. 48 353 [15] Akasaki I, Amano H, Koide Y, Hiramatsu K and Sawaki N 1989 J.Cryst. Growth 98 209 [16] Ohba Yand Sato R 2000 J. Cryst. Growth 221 258 [17] Nakamura F, Hashimoto S, Hara M, Imanaga S, Ikeda M and Kawai H1998 J. Cryst. Growth 195 280 [18] Raghavan S and Redwing J M 2004 J. Appl. Phys. 96 5 [19] Chen P, Xie S Y, Chen Z Z, Zhou Y G, Shen B, Zhang R, Zheng Y D,Zhu J M, Wang M, Wu X S, Jiang S S and Feng D 2000 J. CrystalGrowth 213 27 [20] Wuu D S, Horng R H, Tseng W H, Lin W T and Kung C Y 2000 J.Crystal Growth 220 235 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|