Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 501-503    DOI:
Original Articles |
High Coupling Efficiency Generation in Water Confined Laser Plasma Propulsion
ZHENG Zhi-Yuan 1,2;ZHANG Yi1;ZHOU Wei-Gong2;LU Xin1;LI Yu-Tong1;ZHANG Jie1
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 2School of Materials Science and Technology, China University of Geosciences, Beijing 100083
Cite this article:   
ZHENG Zhi-Yuan, ZHANG Yi, ZHOU Wei-Gong et al  2007 Chin. Phys. Lett. 24 501-503
Download: PDF(186KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High coupling efficiency generation in water confined laser plasma propulsion is investigated. It is found that the coupling efficiency is enhanced over thirty times in water confined ablation compared to that of direct ablation. From calculation of the ablation pressure induced by the plasma on the target surface, it is realized that high coupling efficiency is attributed to the confinement of the water layer on the plasma expansion.
Keywords: 52.75.Di      79.20.Ds      62.50.+p     
Received: 23 October 2006      Published: 24 February 2007
PACS:  52.75.Di (Ion and plasma propulsion)  
  79.20.Ds (Laser-beam impact phenomena)  
  62.50.+p  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Zhi-Yuan
ZHANG Yi
ZHOU Wei-Gong
LU Xin
LI Yu-Tong
ZHANG Jie
[1] Yabe T, Phipps C, Yamaguchi M et al 2002 Appl. Phys.Lett. 80 4318
[2] Zheng Z Y, Zhang J, Hao Z Q et al 2006 Chin. Phys. 15580
[3] Fabbro R, Fournier J, Ballard P et al 1990 J. Appl.Phys. 68 775
[4] Colvin J D, Ault E R, King W E and Zimmerman I H 2003 Phys.Plasmas 10 2940
[5] Zheng Z Y, Zhang J, Zhang Y et al 2006 Appl. Phys. A 85 441
[6] Zheng Z Y, Zhang J, Lu X et al 2005 Chin. Phys. Lett. 22 1725
[7] Pakhomov A V, Gregory D A, Thompson M S et al 2002 AIAAJ. 40 947
[8] Zhu S, Lu Y F and Hong M H 2001 Appl. Phys. Lett. 79 1396
[9] Peyre P, Berthe L, Fabbro R and Sollier A 2004 J. Phys. D:Appl. Phys. 37 1132
[10] Berthe L, Fabbro R, Peyre P and Bartncki E 1999 J. Appl.Phys. 85 7552
[11] Vogel A, Noack J, Nahen K et al 1999 Appl. Phys. B 68271
[12] Berthe L, Sollier A, Peyre P et al 2000 J. Phys. D 332142
Related articles from Frontiers Journals
[1] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 501-503
[2] ZHANG Chun-Lai, LI Xi-Bin, WANG Zhi-Guo**, LIU Chun-Ming, XIANG Xia, LV Hai-Bing, YUAN Xiao-Dong, ZU Xiao-Tao . Laser Cleaning Techniques for Removing Surface Particulate Contaminants on Sol-Gel SiO2 Films[J]. Chin. Phys. Lett., 2011, 28(7): 501-503
[3] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 501-503
[4] SHI Li-Wei, **, DUAN Yi-Feng, YANG Xian-Qing, TANG Gang . Phonon and Elastic Instabilities in Zincblende TlN under Hydrostatic Pressure from First Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(10): 501-503
[5] QI Mei-Lan, **, ZHONG Sheng, FAN Duan, LUO Chao, HE Hong-Liang . Microscopic Characteristics of Damage Evolution in Ultrapure Aluminum under Tensile Loading[J]. Chin. Phys. Lett., 2011, 28(1): 501-503
[6] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 501-503
[7] SHI Li-Wei, DUAN Yi-Feng, QIN Li-Xia. Structural Stability and Elastic Properties of Wurtzite TlN under Hydrostatic Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 501-503
[8] HUANG Wan-Qing, HAN Wei, WANG Hai-Jun, MIAO Xin-Xiang, YE Ya-Yun, LIFu-Quan, FENG Bin, JING Feng, ZHENG Wan-Guo. Explanation of Laser-Induced Damage Behavior of Fused Silica in a Large-Aperture Laser using a Small-Aperture Damage Test[J]. Chin. Phys. Lett., 2009, 26(9): 501-503
[9] YOU Shu-Jie, CHEN Liang-Chen, JIN Chang-Qing. Hydrostaticity of Pressure Media in Diamond Anvil Cells[J]. Chin. Phys. Lett., 2009, 26(9): 501-503
[10] HOU Ri-Li, , PENG Jian-Xiang, JING Fu-Qian, ZHANG Jian-Hua, ZHOU Ping. Reshock Response of 2A12 Aluminum Alloy at High Pressures[J]. Chin. Phys. Lett., 2009, 26(9): 501-503
[11] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 501-503
[12] ZHOU Ming, YUAN Dong-Qing, ZHANG Wei, SHEN Jian, LI Bao-Jia, SONG Juan, CAI Lan. Sub-wavelength Ripple Formation on Silicon Induced by Femtosecond Laser Radiation[J]. Chin. Phys. Lett., 2009, 26(3): 501-503
[13] YU Yong, ZHAI Guang-Jie, JIN Chang-Qing. A Simple System to Measure Superconducting Transition Temperature at High Pressure[J]. Chin. Phys. Lett., 2009, 26(2): 501-503
[14] PAN Wen-Xia, LI Teng, WU Cheng-Kang. Effects of Anode Temperature on Working Characteristics and Performance of a Low Power Arcjet Thruster[J]. Chin. Phys. Lett., 2009, 26(12): 501-503
[15] WANG Hai-Yan, CHEN Yan, LIU Yu-Wen, LI Fei, LIU Jian-Hua, PENG Gui-Rong, WANG Wen-Kui. Pressure Effects on Solid State Phase Transformation of Aluminium Bronze in Cooling Process[J]. Chin. Phys. Lett., 2009, 26(10): 501-503
Viewed
Full text


Abstract