Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 458-461    DOI:
Original Articles |
High-Sensitivity Sensor Based on Surface Plasmon Resonance Enhanced Lateral Optical Beam Displacements
YANG Xiao-Yan1;LIU De-Ming1;XIE Wen-Chong2;LI Chun-Fang3
1 Institute of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 2 Institute of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 3 Department of Physics, Shanghai University, Shanghai 200436
Cite this article:   
YANG Xiao-Yan, LIU De-Ming, XIE Wen-Chong et al  2007 Chin. Phys. Lett. 24 458-461
Download: PDF(233KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a new optical sensor based on surface plasmon resonance (SPR) enhanced lateral optical beam displacements. Compared with the traditional SPR methods, the new method provides higher sensitivity to the sensor system. Theoretical simulations show that the refractive index (RI) detection sensitivity of the SPR sensor based on the displacement measurement has a strong dependence on the thickness of the metal film. When the optimal thickness of the metal film is selected, the RI resolution of the SPR sensor is predicted to be 2.2×10-7 refractive index units (RIU). Furthermore, it is found that the incidence angle can be used as a parameter to adjust the operating range of the sensor to different refractive index ranges.
Keywords: 42.79.-e      78.20.Bh      73.20.Mf     
Received: 20 July 2006      Published: 24 February 2007
PACS:  42.79.-e (Optical elements, devices, and systems)  
  78.20.Bh (Theory, models, and numerical simulation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0458
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Xiao-Yan
LIU De-Ming
XIE Wen-Chong
LI Chun-Fang
[1] Margheri G et al 1997 Appl. Opt. 36 4521
[2] Matsubara K et al 1988 Appl. Opt. 27 1160
[3] Sakai G et al 1998 Sens. Actuators B 49 5
[4] Kretschmann E 1971 Z. Phys. 241 313
[5] Johnston K S et al 1995 Mater. Chem. Phys. 42 242
[6] Chadwick B and Gal M 1993 Jan. J. Appl. Phys. 32 2716
[7] Nelson S G eta al 1996 Sen. Actuators B 35/36 187
[8] Shen S et al 1998 Appl. Opt. 37 1747
[9] Wu C M and Pao M C 2004 Opt. Exp. 12 3509
[10] Ran B and Lipson S G 2006 Opt. Exp. 14 5641
[11] Goos F and Hanchen H 1947 Ann. Physik 1 333
[12] Li C F and Yang X Y 2004 Chin. Phys. Lett. 21 485
[13] Yin X B and Hessenlink L 2004 Appl. Phys. Lett. 85 372
[14] Artmann K 1948 Ann. Phys. (Leipzig) 2 87
[15] Kurihara K and Suzuki K 2002 Anal. Chem. 74 696
[16] Hsiu F M et al 2002 Proc. SPIE 4819 167
[17] Homola J et al 1999 Sens. Actuators B 54 3
Related articles from Frontiers Journals
[1] KIM Un-Chol, JIANG Xiao-Qing. Numerical Analysis of Efficiency Enhancement in Plasmonic Thin-Film Solar Cells by Using the SILVACO TCAD Simulator[J]. Chin. Phys. Lett., 2012, 29(6): 458-461
[2] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 458-461
[3] YAO Jie,YE Yong-Hong**. Super-Resolution Imaging by using a Metallic Rod Array in the Near Infrared Region[J]. Chin. Phys. Lett., 2012, 29(4): 458-461
[4] M. Afshari Bavil,SUN Xiu-Dong*,HUANG Feng. Frequency Selective Propagation by Employing Fabry–Perot Nanocavities in a Subwavelength Double-slit Structure[J]. Chin. Phys. Lett., 2012, 29(4): 458-461
[5] WU Ya-Min, CHEN Guo-Qing, MA Chao-Qun, XUE Si-Zhong, ZHU Zhuo-Wei. Optical Bistability in Graded Core-Shell Granular Composites[J]. Chin. Phys. Lett., 2012, 29(3): 458-461
[6] MA Jian-Yong, FAN Yong-Tao. Guided Mode Resonance Transmission Filters Working at the Intersection Region of the First and Second Leaky Modes[J]. Chin. Phys. Lett., 2012, 29(2): 458-461
[7] FU Xiao-Jian, XU Yuan-Da, ZHOU Ji. Abnormal Dielectric Response in an Optical Range Based on Electronic Transition in Rare-Earth-Ion-Doped Crystals[J]. Chin. Phys. Lett., 2012, 29(2): 458-461
[8] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 458-461
[9] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 458-461
[10] CHEN Xiao-Yong, SHENG Xin-Zhi**, WU Chong-Qing. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System[J]. Chin. Phys. Lett., 2012, 29(1): 458-461
[11] ZHANG Jin-Su, ZHONG Hai-Yang, SUN Jia-Shi, CHENG Li-Hong, LI Xiang-Ping, CHEN Bao-Jiu**. Reddish Orange Long-Lasting Phosphorescence in KY3F10:Sm3+ for X-Ray or Cathode Ray Tubes[J]. Chin. Phys. Lett., 2012, 29(1): 458-461
[12] WANG Peng, WANG Rong-Yao**, JIN Jing-Yang, XU Le, SHI Qing-Fan**. The Morphological Change of Silver Nanoparticles in Water[J]. Chin. Phys. Lett., 2012, 29(1): 458-461
[13] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches[J]. Chin. Phys. Lett., 2011, 28(8): 458-461
[14] YU Huai-Yong, **, ZHANG Chun-Xi, FENG Li-Shuang, HONG Ling-Fei, WANG Jun-Jie, . Optical Noise Analysis in Dual-Resonator Structural Micro-Optic Gyro[J]. Chin. Phys. Lett., 2011, 28(8): 458-461
[15] ZHOU Jing-Tao**, SHEN Hua-Jun, YANG Cheng-Yue, LIU Huan-Ming, TANG Yi-Dan, LIU Xin-Yu . Compact 2×2 Multi-Mode Interference Couplers with Uneven Splitting-Ratios Based on Silicon Nanowires[J]. Chin. Phys. Lett., 2011, 28(8): 458-461
Viewed
Full text


Abstract