Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 450-453    DOI:
Original Articles |
Temperature Dependence of Photoinduced Birefringence in an Azobenzene Polymer
XU Hong-Tao;WANG Chang-Shun;PAN Xu; ZHANG Xiao-Qiang;WANG Chuan-Yu;SUN Cun-Ying
Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
XU Hong-Tao, WANG Chang-Shun, PAN Xu et al  2007 Chin. Phys. Lett. 24 450-453
Download: PDF(201KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The photoinduced birefringence in an azobenzene polymer is investigated at different temperatures between -20°C to 50°C. It is found that there is a peak value of photoinduced birefringence in the temperature dependence of the photoinduced birefringence under a certain pumping intensity. With the pump light in 90mW/cm2, the peak value of the photoinduced birefringence appeared at about 0°C. The effect of temperature on the photoinduced birefringence is discussed using the competition mechanism between the photoinduced reorientation and the thermal random motion.
Keywords: 42.70.Jk      42.65.Sf      42.70.Ln     
Received: 01 August 2006      Published: 24 February 2007
PACS:  42.70.Jk (Polymers and organics)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.70.Ln (Holographic recording materials; optical storage media)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0450
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Hong-Tao
WANG Chang-Shun
PAN Xu
ZHANG Xiao-Qiang
WANG Chuan-Yu
SUN Cun-Ying
[1] Sekkat Z et al 1997 J. Opt. Soc. Am. B 14 829
[2] Huang M M et al 2004 Chin. Phys. Lett. 21 1969
[3] Natansohn A and Rochon P 1999 Adv. Mater. 11 1387
[4] Hvilsted S, Andruzzi F and Ramanujam P S 1992 Opt. Lett. 17 1234
[5] Chen W Z et al 2006 Chin. Phys. Lett. 23 151
[6] Natansohn A et al 1992 Macromolecules 25 2268
[7] Buffeteau T and P\'ezolet M 1996 Appl. Spectrosc. 50 948
[8] Wang C S et al 1999 Appl. Phys. Lett. 74 19
[9] Wang C S et al 1999 Appl. Phys. B 68 1117
[10] Song O K, Wang C H and Pauley M A 1997 Macromolecules 30 6913
[11] Brown D, Natansohn A and Rochon P 1995 Macromolecules 28 6116
[12] Tawa K et al 2000 Polymer 41 3235
[13] Hwang J S, Lee G J and Lim T K 1994 J. Korean Phys. Soc. 27 392
[14] Ivanov S et al 1991 Makromol. Chem. 12 709
[15] Blanche P A et al 2000 J. Opt. Soc. Am. B 17 729
[16] Pan L Y et al 2004 J. Phys. D: Appl. Phys. 37 1002
[17] Mita I, Horie K and Hirao K 1989 Macromolecules 22 558
[18] Maertens C et al 1999 Polymer. Int. 48 205
[19] Silva J R et al 2002 Polymer 43 3753
[20] Agnol F D et al 2002 Macromol. Rapid Commun. 23 948
[21] Sch\"onhoff M, Mertesdorf M and L\"osche M 1996 J. Phys.Chem. 100 7558
[22] Ramanujam P S 2003 Opt. Lett. 28 2375
[23] Du W C and Liu S H 1993 Thin Solid Films 229 122
[24] Werner O et al 1990 Opt. Lett. 15 1117
Related articles from Frontiers Journals
[1] HUANG Xi,QIN Cui,YU Yu,ZHANG Zheng,ZHANG Xin-Liang**. Single- and Dual-Channel DPSK Signal Amplitude Regeneration Based on a Single Semiconductor Optical Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 450-453
[2] CHEN Wei,MENG Zhou**,ZHOU Hui-Juan,LUO Hong. Effects of Input Spectra on the Threshold of Modulation Instability in a Single-Mode Fiber[J]. Chin. Phys. Lett., 2012, 29(4): 450-453
[3] ZHAO Guang-Zhen, XIAO Xiao-Sheng, MEI Jia-Wei, YANG Chang-Xi. Multiple Dissipative Solitons in a Long-Cavity Normal-Dispersion Mode-Locked Yb-Doped Fiber Laser[J]. Chin. Phys. Lett., 2012, 29(3): 450-453
[4] LIANG Shi-Xiong, WU Zhao-Xin, ZHAO Xuan-Ke, HOU Xun. Escaped and Trapped Emission of Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2012, 29(2): 450-453
[5] SUN Xiao-Qiang, CHEN Chang-Ming, LI Xiao-Dong, WANG Xi-Bin, YANG Tian-Fu, ZHANG Da-Ming, WANG Fei**, XIE Zhi-Yuan**. Polymer Electro-optic Modulator Linear Bias Using the Thermo-optic Effect[J]. Chin. Phys. Lett., 2012, 29(1): 450-453
[6] DOU Fei, ZHANG Xin-Ping** . Charge Transfer Channels in Formation of Exciplex in Polymer Blends[J]. Chin. Phys. Lett., 2011, 28(9): 450-453
[7] DONG Shu-Guang, YANG Jun-Yi, SHUI Min, YI Chuan-Xiang, LI Zhong-Guo, SONG Ying-Lin** . Measurement of Temperature Change in Nonlinear Optical Materials by Using the Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(8): 450-453
[8] WANG He-Lin, YANG Ai-Jun**, LENG Yu-Xin, WANG Cheng . Modified Raman Response Model and Supercontinuum Generation in Flat Dispersion Photonic Crystal Fiber with Two-Zero Dispersion Wavelengths[J]. Chin. Phys. Lett., 2011, 28(3): 450-453
[9] XU Ming**, ZHOU Zhen, PU Xiao, JI Jian-Hua, YANG Shu-Wen . Phase Noise Monitor and Reduction by Parametric Saturation Approach in Phase Modulation Systems[J]. Chin. Phys. Lett., 2011, 28(2): 450-453
[10] SUN Jing**, ZHAO Yi-Kun, WANG Xin-Qiang, REN Quan, CHEN Jing-Wei, ZHANG Guang-Hui, XU Dong, WANG He-Zhou . Nonlinear Optical Studies of [(C4H9)4N][Ni(dmit)2] by Z-Scan Technique[J]. Chin. Phys. Lett., 2011, 28(10): 450-453
[11] WANG Bing**, WU Xiu-Qing, CHENG Dong-Chao . Relaxation Time for an Optical Bistable System Subjected to Color Noises[J]. Chin. Phys. Lett., 2011, 28(1): 450-453
[12] XIANG Shui-Ying**, PAN Wei, YAN Lian-Shan, LUO Bin, ZOU Xi-Hua, JIANG Ning, WEN Kun-Hua . Time-Delay Signature of Chaotic Vertical-Cavity Surface-Emitting Lasers with Polarization-Rotated Optical Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 450-453
[13] WU Wen-Xuan, LUO Yan-Hua, CHENG Xu-Sheng, TIAN Xiu-Jie, QIU Wei-Wei, REN Xi-Feng, ZHU Bing, ZHANG Qi-Jin,. Effect of Zeroth-Order beam on Azobenzene Polymer Surface Relief Gratings Fabricated by Phase-Mask Method[J]. Chin. Phys. Lett., 2010, 27(9): 450-453
[14] XIANG Shao-Hua, WEN Wei. Two Methods to Dynamics of Cavityless Optomechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 450-453
[15] ZHANG Xiao-Qiang, WANG Chang-Shun, LU Guo-Yuan, HE Ting-Chao. Third-Order Nonlinear Optical Properties of a Series of Polythiophenes[J]. Chin. Phys. Lett., 2010, 27(7): 450-453
Viewed
Full text


Abstract