Original Articles |
|
|
|
|
Isoscaling in Statistical Sequential Decay Model |
TIAN Wen-Dong 1;MA Yu-Gang 1;CAI Xiang-Zhou 1;FANG De-Qing 1;GUO Wei 1;MA Chun-Wang 1;LIU Gui-Hua 1,2;SHEN Wen-Qing 1;SHI Yu 1,2;SU Qian-Min 1,2;WANG Hong-Wei 1;WANG Kun 1;YAN Ting-ZHi |
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800
2 School of the Chinese Academy of Sciences, Beijing 100049 |
|
Cite this article: |
TIAN Wen-Dong, MA Yu-Gang, CAI Xiang-Zhou et al 2007 Chin. Phys. Lett. 24 385-388 |
|
|
Abstract A sequential decay model is used to study isoscaling, i.e. the factorization of the isotope ratios from sources of different isospins and sizes over a broad range of excitation energies, into fugacity terms of proton and neutron umber, R21(N,Z)=Y2(N,Z)/Y1(N,Z)=Cexp(αN+βZ). It is found that the isoscaling parameters α and β have a strong dependence on the isospin difference of equilibrated source and excitation energy, no significant influence of the ource size on α and β has been observed. It is found that α and β decrease with the excitation energy and are linear functions of 1/T and β(Z/A)2 or △(N/A)2 of the sources. Symmetry energy coefficient Csym is constrained from the relationship of α and source △(Z/A)2, β and source △(N/A)2.
|
Keywords:
24.10.-i
24.10.Pa
25.70.-z
|
|
Received: 21 August 2006
Published: 24 February 2007
|
|
PACS: |
24.10.-i
|
(Nuclear reaction models and methods)
|
|
24.10.Pa
|
(Thermal and statistical models)
|
|
25.70.-z
|
(Low and intermediate energy heavy-ion reactions)
|
|
|
|
|
[1] Li B A and Schroeder W 2001 Isospin Physics in Heavy IonCollisions at Intermediate Energies (New York: Nova Science) [2] Di Toro M et al 1999 Prog. Nucl. Nucl. Phys. f 42125 and references therein [3] Li B A, Ko C M and Bauer W 1998 Int. J. Mod. Phys. Ef 7 147 and references therein [4] Ma Y G et al 1999 Phys. Rev. C f 60 024607 [5] M\"{uller H and Serot B D 1995 Phys. Rev. C f 52 2072 [6] Bombaci I, Kuo T S and Lombardo U 1994 Phys. Rep. f242 165 [7] Das Gupta S, Mekjian A Z and Tsang M B 2001 Adv. Nucl.Phys. f 26 91 [8] Xu H S et al 2000 Phys. Rev. Lett. f 85 716 [9] Tsang M B et al 2001 Phys. Rev. C f 64 041603(R) [10] Tsang M B et al 2001 Phys. Rev. Lett. f 86 5023 [11] Tsang M B et al 2001 Phys. Rev. C f 64 054615 [12] Brzychczyk J et al 1993 Phys. Rev. C f 47 1553 [13] Volkov V 1978 Phys. Rep. f 44 93 [14] Veselsky M, Souliotis G A and Jandel M 2004 Phys. Rev.C f 69 044607 [15] Souliotis G A et al 2003 Phys. Rev. C f 68 024605 [16] Botvina A S, Lozhkin O V and Trautmann W 2002 Phys.Rev. C f 65 044610 [17] Baran V et al 2005 Phys. Rep. f 410 335 [18] Geraci E et al 2004 Nucl Phys. A f 732 173 [19] Shetty D V et al 2004 Phys. Rev. C f 70 011601(R) [20] Wang K et al 2005 Chin. Phys. Lett. f 22 53 [21] Ma Y G et al 2005 Phys. Rev. C f 72 064603 [22] Ma Y G et al 2004 Phys. Rev. C f 69 064610 [23] Ono A, Danielewicz P, Friedman W A, Lynch W G and Tsang M B2003 Phys. Rev. C f 68 051601(R) [24] Tian W D et al 2005 Chin. Phys. Lett. f 22 306 [25] Raduta A R 2005 Eur. Phys. J. A f 24 85 [26] Tian W D et al nucl-th/0601079 [27] Fang D Q et al nucl-th/0601067 [28] Charity R J et al 1988 Nucl. Phys. A f 483 371 [29] Charity R J Computer Code GEMINI http://wunmr.wustl.edu/pub/gemini [30] Hauser H and Feshbach H 1952 Phys. Rev. f 87 366 [31] Moretto L G 1975 Nucl. Phys. A f 247 211 [32] Charity R J, Korolija M, Sarantites D G and Sobotka L G 1997 Phys. Rev. C f 56 873 [33] Bohr Aagr and Mottelson Ben R 1998 Nuclear Structures(New York: Benjamin) vol II [34] Krappe H J, Nix J R and Sierk A J 1979 Phys. Rev. Cf 20 992 [35] Moller P and Nix J R 1981 Nucl. Phys. A f 361 117 [36] Li B A and Chen L W 2006 Phys. Rev. C f 74 034610 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|