Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 363-365    DOI:
Original Articles |
Resonant Response of Rectangular AFM Cantilever in Liquid
CHEN Yu-Hang;HUANG Wen-Hao
Department of Precision Machinery and Instrumentation, University of Science and Technology of China, Hefei 230026
Cite this article:   
CHEN Yu-Hang, HUANG Wen-Hao 2007 Chin. Phys. Lett. 24 363-365
Download: PDF(189KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dynamic characteristics of atomic force microscopy (AFM) cantilevers can be influenced by their working media. We perform an experimental study on the resonant responses of rectangular AFM cantilevers with different sizes immersed in various viscous fluids. The measured resonance frequencies in liquids are used to validate several theoretical models. Comparison shows the analytical model proposed by Sader [J. Appl. Phys. 84 (1998) 64] can give the best agreement with the experimental results with the maximum relative error nearly 16% for all the cantilevers in different liquids. The ratio between the resonant frequencies in air and water is almost independent of the cantilever length, which is consistent with the theoretical analyses.
Keywords: 07.79.Lh      43.40.Cw     
Received: 18 September 2006      Published: 24 February 2007
PACS:  07.79.Lh (Atomic force microscopes)  
  43.40.Cw (Vibrations of strings, rods, and beams)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0363
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Yu-Hang
HUANG Wen-Hao
[1] Garci a R and Perez R 2002 Surf. Sci. Rep. 47 197
[2] Hansma P K et al 1994 Appl. Phys. Lett. 64 1738
[3] Putman C A J et al 1994 Appl. Phys. Lett. 64 2454
[4] Wei Z and Zhao Y P 2004 Chin. Phys. Lett. 21 616
[5] Doktycz M J et al 2003 Ultramicroscopy 97 209
[6] Sader J E 1998 J. Appl. Phys. 84 64
[7] Chon J W M, Mulvaney P and Sader J E 2000 J. Appl. Phys. 87 3978
[8] Legleiter J and Kowalewski T 2005 Appl. Phys. Lett. 87163120
[9] Bergaud C and Nicu L 2000 Rev. Sci. Instrum. 71 2487
[10] Hirai Y et al 1998 Microprocesses and NanotechnologyConf. (Kjungju, Korea) p 89
[11] Scuor N et al 2006 Meas. Sci. Technol. 17 173
Related articles from Frontiers Journals
[1] ZHAO Kun-Yu,ZENG Hua-Rong**,SONG Hong-Zhang,HUI Sen-Xing,LI Guo-Rong,YIN Qing-Rui. The Observation of Martensite and Magnetic Domain Structures in Ni53Mn24Ga23 Shape Memory Alloys by Scanning Electron Acoustic Microscopy and Scanning Thermal Microscopy[J]. Chin. Phys. Lett., 2012, 29(5): 363-365
[2] BAI Yong-Qiang**, ZHU Xing, WU Jun-Zheng, BAI Wen-Guang . Micropore Structure Representation of Sandstone in Petroleum Reservoirs Using an Atomic Force Microscope[J]. Chin. Phys. Lett., 2011, 28(8): 363-365
[3] LIU Li-Ming, ZENG Hua-Rong**, CAO Zhen-Zhu, LENG Xue, ZHAO Kun-Yu, LI Guo-Rong, YIN Qing-Rui . Piezoresponse Force Microscopy Imaging of Ferroelectric Domains in Bi(Zn1/2Ti1/2)O3−Pb(Mg1/3Nb2/3)O3−PbTiO3 Piezoelectric Ceramics[J]. Chin. Phys. Lett., 2011, 28(8): 363-365
[4] ZHAO Ya-Jun, CHENG Qian, QIAN Meng-Lu. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope[J]. Chin. Phys. Lett., 2010, 27(5): 363-365
[5] LI Yuan, QIAN Jian-Qiang. Higher Harmonics Generation in Tapping Mode Atomic Force Microscope[J]. Chin. Phys. Lett., 2009, 26(10): 363-365
[6] ZHAO Kun-Yu, ZENG Hua-Rong, LI Guo-Rong, SONG Hong-Zhang, CHENG Li-Hong, HUI Sen-Xing, YIN Qing-Rui. Nanoscale Thermal Response in ZnO Varistors by Atomic Force Microscopy[J]. Chin. Phys. Lett., 2009, 26(10): 363-365
[7] ZHAO Kun-Yu, ZENG Hua-Rong, SONG Hong-Zhang, HUI Sen-Xing, LI Guo-Rongv, YIN Qing-Rui, Kiyoshi Shimamura, Chinna Venkadasamy Kannan, Encarnacion Antonia Garcia Villora, Shunji Takekawa, Kenji Kitamura. Acoustic Imaging Frequency Dynamics of Ferroelectric Domains by Atomic Force Microscopy[J]. Chin. Phys. Lett., 2008, 25(9): 363-365
[8] WANG Peng, YANG Hai-Jun, WANG Hua-Bin, LI Hai, WANG Xin-Yan, WANG Ying, LÜ, Jun-Hong, LI Bin, ZHANG Yi, HU Jun,. Modification of AFM Tips for Facilitating Picking-up of Nanoparticles[J]. Chin. Phys. Lett., 2008, 25(7): 363-365
[9] DING Xi-Dong, FU Gang, XIONG Xiao-Min, ZHANG Jin-Xiu. Characterization Method of Polycrystalline Materials Using Conductive Atomic Force Microscopy[J]. Chin. Phys. Lett., 2008, 25(10): 363-365
[10] WANG Hua-Bin, ZHOU Xing-Fei, AN Hong-Jie, GUO Yun-Chang, SUNJie-Lin, ZHANG Yi, HU Jun,. Effects of Substrate Hydrophobicity/Hydrophilicity on Height Measurement of Individual DNA Molecules[J]. Chin. Phys. Lett., 2007, 24(3): 363-365
[11] MA Hong-Xia, HAN Yan-Jun, SHENTU Wei-Jin, ZHANG Xian-Peng, LUO Yi,. A Novel Ni/Ag/Pt Ohmic Contact to P-Type GaN for Flip-Chip Light-Emitting Diodes[J]. Chin. Phys. Lett., 2006, 23(8): 363-365
[12] WEI Zheng, ZHAO Ya-Pu. Experimental Investigation of the Velocity Effect on Adhesion Forces with an Atomic Force Microscope[J]. Chin. Phys. Lett., 2004, 21(4): 363-365
[13] BA Long, SHU Jian, SUN Ping, LU Zu-Hong. Mapping Nanoscale Domains in a Sol-Gel-Derived (Pb,La) (Zr, Ti)O3 Thin Film Using Atomic Force Microscopy [J]. Chin. Phys. Lett., 2003, 20(4): 363-365
[14] GONG Zheng, FANG Zhi-Dan, MIAO Zhen-Hua, NIU Zhi-Chuan, FENG Song-Lin. Self-Organized InAs Quantum Wires on GaAs (331)A Substrates[J]. Chin. Phys. Lett., 2003, 20(10): 363-365
Viewed
Full text


Abstract