Original Articles |
|
|
|
|
Dynamical and Geometric Phases of a Two Energy-Level Bose--Einstein Condensate Interacting with a Laser Field |
YU Zhao-Xian 1;JIAO Zhi-Yong 2;JIN Shuo 3;WANG Ji-Suo 4 |
1 Department of Physics, Beijing Information Science and Technology University, Beijing 100101
2 Department of Applied Physics, China University of Petroleum (East China), Dongying 257061
3 Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083
4 Department of Physics, Liaocheng University, Liaocheng 252059 |
|
Cite this article: |
YU Zhao-Xian, JIAO Zhi-Yong, JIN Shuo et al 2007 Chin. Phys. Lett. 24 330-332 |
|
|
Abstract By using of the invariant theory, we study a two energy-level Bose--Einstein condensate interacting with a time-dependent laser field, the dynamical and geometric phases are given respectively. The Aharonov--Anandan phase is also obtained under the cyclical evolution.
|
Keywords:
03.65.Vf
03.75.Mn
|
|
Received: 10 October 2006
Published: 24 February 2007
|
|
PACS: |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
|
|
|
[1] Anderson M H, Ensher J R, Matthens M R, Wieman C E and CornellE A 1995 Science 269 198 [2] Bradley C C, Sackett C A, Tollet J J, Hulet R G 1995 Phys.Rev. Lett. 75 1687 [3] Davis K B, Mewes M O, Andrews M R, Druten N J, Durfee D S,Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969 [4] Politzer H D 1991 Phys. Rev. A 43 6444 Cheng R and Liang J Q 2005 Phys. Rev. A 71 053607 Zheng G P, Liang J Q and Liu W M 2005 Phys. Rev. A 71 053608 Zheng G P, Liang J Q and Liu W M 2006 Ann. Phys. (N.Y.) 321 950 Hao Y, Zhang Y B, Liang J Q and Chen S 2006 Phys. Rev. A 73 053605 [5] Lewenstein M, You L, Copper J and Burnett K 1994 Phys.Rev. A 50 2207 [6] Grossman S and Holthans M 1995 Phys. Lett. A 208 188 [7]Kuang L M 1998 Commun. Theor. Phys. 30 161 Yu Z X and Jiao Z Y 2001 Commun. Theor. Phys. 36 449 [8] Cirac J I, Gardiner C W and Naraschewski Zoller M P 1996 Phys. Rev. A 54 R3714 [9] Castin Y and Dalibard J 1997 Phys. Rev. A 55 4330 [10] Grossman S and Holthans M 1995 Z. Naturforsch. A: Phys.Sci. 50 323 [11] Wu Y, Yang X and Sun C P 2000 Phys. Rev. A 62 063603 [12] Wu Y 1996 Phys. Rev. A 54 4534 [13] Wu Y, Yang X and Xiao Y 2001 Phys. Rev. Lett. 86 2200 Wu Y et al 2006 Opt. Lett. 31 519 [14] Liu W M, Fan W B, Zheng W M, Liang J Q and Chui S T 2002 Phys. Rev. Lett. 88 170408 [15] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294 [16] Niu Q, Wang X D, Kleinman L, Liu W M, Nicholson D M C andStocks G M 1999 Phys. Rev. Lett. 83 207 [17] Liang J J, Liang J Q and Liu W M 2003 Phys. Rev. A 68 043605 [18] Li W D, Zhou X J, Wang Y Q, Liang J Q and Liu W M 2001 Phys.Rev. A 64 015602 [19]Pancharatnam S 1956 Proc. Indian Acad. Sci., Sec. A 44 247 [20]Berry M V 1984 Proc. R. Soc. London A 392 45 [21]Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 [22]Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339 [23]Mukunda N and Simon R 1993 Ann. Phys. (N.Y.) 228 205 [24]Pati A K 1995 Phys. Rev. A 52 2576 [25] Uhlmann A 1986 Rep. Math. Phys. 24 229 Sj\"{oqvist E 2000 Phys. Rev. Lett. 85 2845 Tong D M et al 2004 Phys. Rev. Lett. 93 080405 [26]Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458 [27] Gao X C, Xu J B and Qian T Z 1991 Phys. Rev. A 44 7016 [28]Richardson D J et al 1988 Phys. Rev. Lett. 61 2030 [29]Wilczek F and Zee A 1984 Phys. Rev. Lett. 25 2111 [30]Moody J et al 1986 Phys. Rev. Lett. 56 893 [31] Sun C P 1990 Phys. Rev. D 41 1349 [32] Sun C P 1993 Phys. Rev. A 48 393 [33] Sun C P1988 Phys. Rev. D 38 298 [34] Sun C P et al 1988 J. Phys. A 21 1595 [35] Sun C P et al 2001 Phys. Rev. A 63 012111 [36]GAO Y F et al 2004 Chin. Phys. Lett. 21 2093 [37]Zhou M, Fang J Y and Huang C J 2003 Acta Phys. Sin. 52 1916 (in Chinese) [38] Wei J and Norman E 1963 J. Math. Phys. 4 575 [39]Chen Z D, Liang J Q, Shen S Q and Xie W F 2004 Phys.Rev. A 69 023611 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|