Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 326-329    DOI:
Original Articles |
Classical Capacity for a Continuous Variable Teleportation Channel
QIN Tao 1;ZHAO Mei-Sheng 1;ZHANG Yong-De 1,2
1 Department of Modern Physics, University of Science and Technology of China, Hefei 230026 2 CCAST (World Laboratory), PO Box 8730, Beijing 100080
Cite this article:   
QIN Tao, ZHAO Mei-Sheng, ZHANG Yong-De 2007 Chin. Phys. Lett. 24 326-329
Download: PDF(223KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The process of quantum teleportation can be considered as a quantum channel. The exact classical capacity of the continuous variable teleportation channel is presented and the channel fidelity is also derived.
Keywords: 03.65.Ud      03.67.-a      89.70.+c     
Received: 01 January 1900      Published: 24 February 2007
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  89.70.+c  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0326
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIN Tao
ZHAO Mei-Sheng
ZHANG Yong-De
[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, PeresA and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Nielson M and Chuang I 2000 Quantum Computation andQuantum Information (Cambridge: Cambridge University Press)
[3] Preskill J http://www.theory.caltech.edu/\~preskill/ph229
[4] Braunstein S L and Pati A K 2002 Quantum InformationTheory with Continuous Variables (Dordrecht: Kluwer)
[5] Bowen G and Bose S 2001 Phys. Rev. Lett. 87 267901
[6] Vaidman L 1994 Phys. Rev. A 49 1473
[7] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H andZeilinger A 1997 Nature 390 575
[8] Furusawa A, S\o rensen J L, Braunstein S L, Fuchs CA, Kimble H J and Polzik E S 1998 Science 282 706 Zhang T C, Goh K W, Chou C W, Lodahl P and Kimble H J 2003 Phys.Rev. A 67 033802
[9] Gardiner C W and Zoller P 2000 Quantum Noise(Berlin: Springer)
[10] Thomas M C and Thomas J A 1991 Elements ofInformation Theory (New York: Wiley)
[11 Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869
[12] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[13] Ban M, Sasaki M and Takeoka M 2002 J. Phys. A 35 L401
[14] Takeoka M, Ban M and Sasaki M 2002 J. Opt. B: QuantumSemiclass. Opt. 4 114
[15] Ban M 2004 J. Opt. B: Quantum Semiclass. Opt. 6 224
[16] Pirandola S, Mancini S and Vitali D 2005 Phys. Rev. A 71 042326
[17] Li Y, Zhang J, Zhang J X and Zhang T C 2006 Chin. Phys. 15 1766
[18] Li Y, Zhang T C Zhang J X and Xie C D 2003 Chin. Phys. 12 861
[19] Bennett C H and Shor P W 1998 IEEE Trans. Inf. Theory 44 2724 Holevo A S 1998 Tamagawa University Research Review No 4quant-ph/9809023
[20] Holevo A S 1998 IEEE Trans. Inf. Theory 44 269 Hausladen P, Jozsa R, Schumacher B, Westmoreland M and Wootters WK 1996 Phys. Rev. A 54 1869 Schumacher B and Westmoreland M D 1997 Phys. Rev. A 56 131
[21] Cerf N J, Clavareau J, Macchiavello C and Roland J2005 Phys. Rev. A 72 042330
[22] Qin T, Zhao M S and Zhang Y D quant-ph/0512068
[23] Ban M 2000 J. Opt. B: Quantum Semiclass. Opt. 2 786
[24] Braunstein S L and Kimble H J 2000 Phys. Rev. A 61 042302
[25] Ban M 2004 J. Phys. A 37 L385
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 326-329
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 326-329
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 326-329
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 326-329
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 326-329
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 326-329
[7] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 326-329
[8] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 326-329
[9] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 326-329
[10] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 326-329
[11] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 326-329
[12] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 326-329
[13] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 326-329
[14] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 326-329
[15] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 326-329
Viewed
Full text


Abstract