Original Articles |
|
|
|
|
Classical Capacity for a Continuous Variable Teleportation Channel |
QIN Tao 1;ZHAO Mei-Sheng 1;ZHANG Yong-De 1,2 |
1 Department of Modern Physics, University of Science and Technology of China, Hefei 230026
2 CCAST (World Laboratory), PO Box 8730, Beijing 100080 |
|
Cite this article: |
QIN Tao, ZHAO Mei-Sheng, ZHANG Yong-De 2007 Chin. Phys. Lett. 24 326-329 |
|
|
Abstract The process of quantum teleportation can be considered as a quantum channel. The exact classical capacity of the continuous variable teleportation channel is presented and the channel fidelity is also derived.
|
Keywords:
03.65.Ud
03.67.-a
89.70.+c
|
|
Received: 01 January 1900
Published: 24 February 2007
|
|
|
|
|
|
[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, PeresA and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [2] Nielson M and Chuang I 2000 Quantum Computation andQuantum Information (Cambridge: Cambridge University Press) [3] Preskill J http://www.theory.caltech.edu/\~preskill/ph229 [4] Braunstein S L and Pati A K 2002 Quantum InformationTheory with Continuous Variables (Dordrecht: Kluwer) [5] Bowen G and Bose S 2001 Phys. Rev. Lett. 87 267901 [6] Vaidman L 1994 Phys. Rev. A 49 1473 [7] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H andZeilinger A 1997 Nature 390 575 [8] Furusawa A, S\o rensen J L, Braunstein S L, Fuchs CA, Kimble H J and Polzik E S 1998 Science 282 706 Zhang T C, Goh K W, Chou C W, Lodahl P and Kimble H J 2003 Phys.Rev. A 67 033802 [9] Gardiner C W and Zoller P 2000 Quantum Noise(Berlin: Springer) [10] Thomas M C and Thomas J A 1991 Elements ofInformation Theory (New York: Wiley) [11 Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869 [12] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 [13] Ban M, Sasaki M and Takeoka M 2002 J. Phys. A 35 L401 [14] Takeoka M, Ban M and Sasaki M 2002 J. Opt. B: QuantumSemiclass. Opt. 4 114 [15] Ban M 2004 J. Opt. B: Quantum Semiclass. Opt. 6 224 [16] Pirandola S, Mancini S and Vitali D 2005 Phys. Rev. A 71 042326 [17] Li Y, Zhang J, Zhang J X and Zhang T C 2006 Chin. Phys. 15 1766 [18] Li Y, Zhang T C Zhang J X and Xie C D 2003 Chin. Phys. 12 861 [19] Bennett C H and Shor P W 1998 IEEE Trans. Inf. Theory 44 2724 Holevo A S 1998 Tamagawa University Research Review No 4quant-ph/9809023 [20] Holevo A S 1998 IEEE Trans. Inf. Theory 44 269 Hausladen P, Jozsa R, Schumacher B, Westmoreland M and Wootters WK 1996 Phys. Rev. A 54 1869 Schumacher B and Westmoreland M D 1997 Phys. Rev. A 56 131 [21] Cerf N J, Clavareau J, Macchiavello C and Roland J2005 Phys. Rev. A 72 042330 [22] Qin T, Zhao M S and Zhang Y D quant-ph/0512068 [23] Ban M 2000 J. Opt. B: Quantum Semiclass. Opt. 2 786 [24] Braunstein S L and Kimble H J 2000 Phys. Rev. A 61 042302 [25] Ban M 2004 J. Phys. A 37 L385 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|