Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 315-317    DOI:
Original Articles |
Bound State Solutions of Klein--Gordon Equation with the Kratzer Potential
M. Kocak
Department of Engineering Physics, Faculty of Engineering, University of Gaziantep, 27310 Gaziantep, Türkiye
Cite this article:   
M. Kocak 2007 Chin. Phys. Lett. 24 315-317
Download: PDF(169KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The relativistic problem of spinless particle subject to a Kratzer potential is nalysed. Bound state solutions for s-waves are found by separating the Klein--Gordon equation into two parts. Unlike the similar works in the iterature, the separation make it possible to see explicitly the relativistic ontributions, if any, to the solution in the non-relativistic limit.
Keywords: 03.65.Ge     
Received: 11 August 2006      Published: 24 February 2007
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0315
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Kocak
[1] Gonul B, Ozer O, Kocak M, Tutcu D andCancelik Y 2001 J. Phys. A 34 8271 (quant-ph/0106144)
[2] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Phys.Lett. A 349 87
[3] de Souza Dutra A and Chen G 2006 Phys. Lett. A 349 297
[4] de Castro A S 2005 Phys. Lett. A 338 81
[5] Chen G, Chen Z and Lou Z 2004 Phys. Lett. A 331 374
[6] Qiang W C 2003 Chin. Phys. 12 1054
[7] Gonul B 2006 Chin. Phys. Lett 23 2640 (quant-ph/0603181)
[8] Cooper F, Khare A and Sukhatme U P 1995 Phys. Rep. 251 267
[9] Gonul B, Koksal K and Bakir E 2006 PhysicaScripta 73 279
[10] Sharma L K, Fiase J 2004 Chin. Phys. Lett.
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 315-317
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 315-317
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 315-317
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 315-317
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 315-317
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 315-317
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 315-317
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 315-317
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 315-317
[10] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 315-317
[11] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 315-317
[12] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 315-317
[13] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 315-317
[14] TIAN Gui-Hua, ZHONG Shu-Quan. Ground State Eigenfunction of Spheroidal Wave Functions[J]. Chin. Phys. Lett., 2010, 27(4): 315-317
[15] D. Agboola. Solutions to the Modified Pöschl-Teller Potential in D-Dimensions[J]. Chin. Phys. Lett., 2010, 27(4): 315-317
Viewed
Full text


Abstract