Chin. Phys. Lett.  2007, Vol. 24 Issue (2): 312-314    DOI:
Original Articles |
Multisymplectic Euler Box Scheme for the KdV Equation
WANG Yu-Shun 1,2;WANG Bin 2;CHEN Xin 1
1School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097 2Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
WANG Yu-Shun, WANG Bin, CHEN Xin 2007 Chin. Phys. Lett. 24 312-314
Download: PDF(206KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the multisymplectic Euler box scheme for the Korteweg--de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Zabusky- Kruskal scheme, the multisymplectic 12-point scheme, the narrow box scheme and the spectral method are made to show nice numerical stability and ability to preserve the integral invariant for long-time integration.
Keywords: 02.60.Cb      02.70.Bf      45.10.Na      45.20.Dh     
Received: 01 January 1900      Published: 24 February 2007
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  45.20.dh (Energy conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I2/0312
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yu-Shun
WANG Bin
CHEN Xin
[1] Marsden J E, Patrick G P and Shkoller S 1998 Comm. Math.Phys. 199 351
[2] Bridge T J and Reich S 2001 Phys. Lett. A 284 184
[3]Zabusky N J and Kruskal M D 1965 Phys. Rev. 155 240
[4] Zhao P F and Qin M Z 2000 J. Phys. A 33 3613
[5] Wang Y S, Wang B and Qin M Z 2004 Appl. Math. Comput. 149 299
[6] Ascher U M and McLachlan R I 2005 Appl. Numer. Algor. 48 255
[7]Moore B and Reich S 2003 Numer. Math. 95 625
[8] Liu T T and Qin M Z 2002 J. Math. Phys. 43 4060
[9] Chen J B 2001 Appl. Math. Comput. 124 371
[10]Chen J B 2004 Chin. Phys. Lett. 21 37
[11]Hong J L, Liu Y, Munthe-Kaas H and Zanna A 2006 Appl. Numer. Math. 56 814
[12] Sun Y J 2004 J. Comput. Math. 22 611
[13] Bridges T J and Derks G 1999 Proc. R. Soc. London A 455 2427
[14] Abe K and Inoue O 1980 J. Comput. Phys. 34 202
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 312-314
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 312-314
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 312-314
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 312-314
[5] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 312-314
[6] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 312-314
[7] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 312-314
[8] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 312-314
[9] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 312-314
[10] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 312-314
[11] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 312-314
[12] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 312-314
[13] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 312-314
[14] YUE Song, LI Zhi, CHEN Jian-Jun, GONG Qi-Huang. Bending Loss Calculation of a Dielectric-Loaded Surface Plasmon Polariton Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 312-314
[15] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 312-314
Viewed
Full text


Abstract