Original Articles |
|
|
|
|
Multisymplectic Euler Box Scheme for the KdV Equation |
WANG Yu-Shun 1,2;WANG Bin 2;CHEN Xin 1 |
1School of Mathematics and Computer Sciences, Nanjing Normal University, Nanjing 210097
2Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029 |
|
Cite this article: |
WANG Yu-Shun, WANG Bin, CHEN Xin 2007 Chin. Phys. Lett. 24 312-314 |
|
|
Abstract We investigate the multisymplectic Euler box scheme for the Korteweg--de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Zabusky- Kruskal scheme, the multisymplectic 12-point scheme, the narrow box scheme and the spectral method are made to show nice numerical stability and ability to preserve the integral invariant for long-time integration.
|
Keywords:
02.60.Cb
02.70.Bf
45.10.Na
45.20.Dh
|
|
Received: 01 January 1900
Published: 24 February 2007
|
|
PACS: |
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
02.70.Bf
|
(Finite-difference methods)
|
|
45.10.Na
|
(Geometrical and tensorial methods)
|
|
45.20.dh
|
(Energy conservation)
|
|
|
|
|
[1] Marsden J E, Patrick G P and Shkoller S 1998 Comm. Math.Phys. 199 351 [2] Bridge T J and Reich S 2001 Phys. Lett. A 284 184 [3]Zabusky N J and Kruskal M D 1965 Phys. Rev. 155 240 [4] Zhao P F and Qin M Z 2000 J. Phys. A 33 3613 [5] Wang Y S, Wang B and Qin M Z 2004 Appl. Math. Comput. 149 299 [6] Ascher U M and McLachlan R I 2005 Appl. Numer. Algor. 48 255 [7]Moore B and Reich S 2003 Numer. Math. 95 625 [8] Liu T T and Qin M Z 2002 J. Math. Phys. 43 4060 [9] Chen J B 2001 Appl. Math. Comput. 124 371 [10]Chen J B 2004 Chin. Phys. Lett. 21 37 [11]Hong J L, Liu Y, Munthe-Kaas H and Zanna A 2006 Appl. Numer. Math. 56 814 [12] Sun Y J 2004 J. Comput. Math. 22 611 [13] Bridges T J and Derks G 1999 Proc. R. Soc. London A 455 2427 [14] Abe K and Inoue O 1980 J. Comput. Phys. 34 202 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|