Chin. Phys. Lett.  2007, Vol. 24 Issue (12): 3590-3592    DOI:
Original Articles |
Chaos Behaviour of Molecular Orbit
LIU Shu-Tang;SUN Fu-Yan;SHEN Shu-Lan
College of Control Science and Engineering, Shandong University, Jinan 250061
Cite this article:   
LIU Shu-Tang, SUN Fu-Yan, SHEN Shu-Lan 2007 Chin. Phys. Lett. 24 3590-3592
Download: PDF(147KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on Hückel's molecular orbit theory, the chaos and bifurcation behaviour of a molecular orbit modelled by a nonlinear dynamic system is studied. The relationship between molecular orbit and its energy level in the nonlinear dynamic system is obtained.
Keywords: 95.10.Fh      05.45.-a     
Received: 18 September 2007      Published: 03 December 2007
PACS:  95.10.Fh (Chaotic dynamics)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/       OR      https://cpl.iphy.ac.cn/Y2007/V24/I12/03590
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Shu-Tang
SUN Fu-Yan
SHEN Shu-Lan
[1] Baxter G W and Olafsen J S 2007 Phys. Rev. Lett. 99 028001
[2]HENIN F and PRIGOGINE I 1974 Proc. Nat. Acad. Sci. USA. 71 2618
[3] Klambauer G 1975 Lutsko J F 1996 Phys. Rev. Lett. 77 2225
[4] Schlamp S and Hathorn B C 2007 Phys. Rev. E. 76 026314
[5]www.sciencedaily.com/releases/2007/07/070727212344.htm.
[6] Pople J A and Beveridge D L 1970 Approximate Molecular OrbitalTheory (New York: McGraw-Hill) p 1
[7]Li X P 1982 Acta Chim. Sin. 40 688 (in Chinese)
[8]Heilbronner E and Bock H 1976 Basis and Manipulation 1 3
[9]Devaney R L 1989 An Introduction to Chaotic DynamicalSystems 2nd edn (Redwood, CA: Addison-Wesley) p 56
[10]Mathematical Analysis (New York: Dekker) p 218
[11]Liu S T and Chen G R 2003 Int. J. Bifur. ChaosAppl. Sci. Engin. 15 1163
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 3590-3592
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 3590-3592
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 3590-3592
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 3590-3592
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 3590-3592
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 3590-3592
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 3590-3592
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 3590-3592
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 3590-3592
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 3590-3592
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 3590-3592
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 3590-3592
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 3590-3592
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 3590-3592
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 3590-3592
Viewed
Full text


Abstract