Original Articles |
|
|
|
|
Polymer White-Light-Emitting Diodes with High Work Function Cathode Based on a Novel Phosphorescent Chelating Copolymer |
XIONG Yan;ZHANG Yong;ZHOU Jian-Lin;PENG Jun-Biao;HUANG Wen-Bo;CAO Yong |
Institute of Polymer Optoelectronic Materials and Devices, Key Laboratory of Special Functional Materials of Ministry of Education, South China University of Technology, Guangzhou 510640 |
|
Cite this article: |
XIONG Yan, ZHANG Yong, ZHOU Jian-Lin et al 2007 Chin. Phys. Lett. 24 3547-3550 |
|
|
Abstract Polymer white-light-emitting diodes are fabricated based on the blend of poly[9,9-di-(2-% ethylhexyl)-fluorenyl-2,7-diyl]-end capped with polysilsesquioxane (PFO) and a chelating copolymer of poly[(9,9-bis(3'-(N,N-dimethylamino) propyl)-2,7-fluorene-alt-2,7-(9,9-dioctylfluorene))-co- [2,7-(9,9-dioctlyfluorene)-alt-5,5-bis(2-(4-methyl-1-naphtha-lene) pyridine-C2,N) iridium (III) acethylacetonate]] (PFN-NaIr). The device with the sole aluminium cathode is able to produce a comparably white electroluminescence efficiency of 1.31cd/A to that of the device using low work function cathodes (such as Ba, Ca, etc.). The CIE coordinates of the white light emission consisting of red, green and blue three components are nearly at (0.34, 0.35). The mechanism of the white light emission from the device with the Al cathode is investigated, which is related to the efficient injection of electrons through the interface of PFN-NaIr/Al.
|
Keywords:
78.60.Fi
78.66.Qn
85.60.Jb
|
|
Received: 09 July 2007
Published: 03 December 2007
|
|
|
|
|
|
[1] Xu Y H , Peng J B, Jiang J X, Xu W, Yang W and Cao Y 2005 Appl. Phys. Lett. 87 193502 [2] Mazzeo M, Pisignano D, Sala F D, Thompson J, Blyth R I R, Gigli G,Cingolani R, Sotgiu G and Barbarella G 2003 Appl. Phys. Lett. 82 334 [3] Furuta P T, Deng L, Garon S, Thompson M E and Fr\'echet J M J 2004 J. Am. Chem. Soc. 126 15388 [4] Jiang J X, Xu Y H, Yang W, Guan R, Liu Z Q, Zhen H Y and CaoY 2006 Adv. Mater. 18 1769 [5] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M Eand Forrest S R 1998 Nature 395 151 [6] Wu H B, Huang F, Peng J B and Cao Y 2005 Org. Electron. 6 118 [7] Yang X H, Mo Y Q, Yang W, Yu G and Cao Y 2001 Appl. Phys.Lett. 79 563 [8] Li F, Tang H, Anderegg J and Shinar J 1997 Appl. Phys.Lett. 70 1233 [9] Cao Y, Yu G and Heeger A J 1998 Adv. Mater. 10 917 [10] Lee H M, Choi K H, Hwang D H, Do L M, Zyung T, Lee J W and Park JK 1998 Appl. Phys. Lett. 72 2382 [11] Wu H B, Huang F, Mo Y Q, Yang W, Wang D, Peng J B and Cao Y 2004 Adv. Mater. 16 1826 [12] Huang F, Hou L T, Wu H B, Wang X, Shen H, Cao W, Yang W and Cao Y2004 J. Am. Chem. Soc. 126 9845 [13] Zhang Y, Xiong Y, Sun Y H, Zhu X H, Peng J B and Cao Y 2007 Polymer 48 3468 [14] Zhang Y, Xu Y H, Niu Q L, Peng J B, Yang W, Zhu X H and Cao Y2007 J. Mater. Chem. 17 992 [15] Chen X W, Tseng H E, Liao J L and Chen S A 2005 J. Phys.Chem. B 109 17496 [16] Bliznyuk V N, Carter S A, Scott J C, Kla1rner G, Miller R D andMiller D C 1999 Macromolecules 32 361 [17] List E J W, Guentner R, Freitas P S and Scherf U 2002 Adv.Mater. 14 374 [18] Niu X D, Ma L, Yao B, Ding J Q, Tu G L, Xie Z Y and Wang L X 2006 Appl. Phys. Lett. 89 213508 [19] Gong X, Ma W L, Ostrowski J C, Bazan G C, Moses D and Heeger A J2004 Adv. Mater. 16 615 [20] Wu H B, Huang F, Peng J B and Cao Y 2005 OrganicElectron. 6 118 [21] Xu L, Guo Y, Xie R, Zhuang J, Yang W and Li T 2002 Nanotechnology 13 725 [22] Michota A, Kudelski A and Bukowska J 2002 Surf. Sci. 502-503 214 [23] Liu J F, Zhang L, Gu N, Hong Q, Ren J, Wu Y, Mao P and Chen P D1998 Supramolec. Sci. 5 705 [24] Huang J S, Li G, Wu E, Xu Q F and Yang Y 2006 Adv. Mater. 18 114 [25] Niu Y H, Liu M S, Ka J W, Bardeker J, Zin M T, Schofield R, Chi Yand Jen A K Y 2007 Adv. Mater. 19 300 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|